• 제목/요약/키워드: damage modeling and assessment

검색결과 94건 처리시간 0.027초

Assessment of the Effect of Probabilistic Modeling of Sea-States in Fatigue Damage Calculations

  • FolsØ, Rasmus;Dogliani, Mario
    • Journal of Ship and Ocean Technology
    • /
    • 제3권3호
    • /
    • pp.1-12
    • /
    • 1999
  • Spectral fatigue damage calculations has been performed on four ships in order to assess the effect that the probabilistic modeling of sea states has on the estimated fatigue life. The damage estimation method is based on the Miner- Palmgren fatigue damage formulation and a spectral approach is used to determine the necessary variances of the stress processes. Both the horizontal and vertical hull girder bending induced stress process together with the local water pressure induced stress process is taken into account. The wave scatter diagrams are applied in the calculations and their fatigue severity is assessed by analyzing the results obtained with the ten scatter diagrams and the four ships. All four ships are analyzed both in full load and ballast conditions and while traveling at both full and reduced speed. It is found that the fatigue severity of a wave scatter diagram is dependent on several parameters, some of these being the extreme wave hight extrapolated from the scatter diagram and the mean zero up-crossing period in conjunction with the ship length . Based on these three parameters and expression is derived in order to calculate one single number describing the fatigue severity of a scatter diagram with respect to a certain ship.

  • PDF

교량의 장기성능 예측을 위한 디지털 트윈모델 정의 (Definition of Digital Twin Models for Prediction of Future Performance of Bridges)

  • 심창수;전치호;강휘랑;당고손;소칸야
    • 한국BIM학회 논문집
    • /
    • 제8권4호
    • /
    • pp.13-22
    • /
    • 2018
  • Future performance prediction of bridges is challenging task for structural engineers. Well-organized information from design, construction and operation stages is essential for the assessment of structures. Digital twin model is a new concept to realize more reliable data platform for management of infrastructures. Damage history including degradation of material, cracking, corrosion, etc. needs to be accumulated in the digital model. The digital model is linked to the analysis model for the assessment of structural performance considering changed mechanical properties of structural components. In this paper, initial definition digital twin model of a PSC-I girder bridge is proposed.

효율적인 임무 피해 평가를 위한 자산-임무 의존성 모델 적용 및 최적화된 구현 (An Asset-Mission Dependency Model Adaptation and Optimized Implementation for Efficient Cyber Mission Impact Assessment)

  • 전영배;정현숙;한인성;윤지원
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권10호
    • /
    • pp.579-587
    • /
    • 2017
  • 사이버 임무 피해 정량화는 정해져있는 임무에 따라 움직여 집단의 목표를 이룩하거나 이윤을 창출하는 군(軍)이나 기업들에게 빠질 수 없는 필수적인 작업이다. 조직이 지닌 자산에 대한 피해가 발생하였을 때, 수행 목표에 대한 피해를 최소화하기 위해 남은 자산만으로 달성할 수 있는 임무의 최대 수용력(capacity)을 정량화하고 빠른 시간 안에 새로운 차선책을 마련하여야 한다. 이를 위해서자산과 임무에 대한 관계를 모델링하여 정형화하면 사이버 공격이 임무에 미친 피해 영향도를 계산할 수 있다. 본 논문에서는 자산과 과업의 관리 업무를 분리하여 효율적인 관리가 가능하도록 자산과 임무 사이의 의존성에 대한 모델을 적용하였고, 적용한 모델을 바탕으로 벡터 단위의 오퍼레이션을 이용하여 계산의 병렬화나 버퍼를 이용해 연산속도를 향상시키는 등 빠른 시간 안에 계산을 완료할 수 있는 최적화된 시스템을 구현하였다.

지상전투차량 취약성 평가를 위한 표적 모델링과 피격선 분석 시스템 (The Target Modeling and The Shot Line Analysis System to Assess Vulnerability of the Ground Combat Vehicle)

  • 유철;장은수;박강;최상영
    • 한국CDE학회논문집
    • /
    • 제20권3호
    • /
    • pp.238-245
    • /
    • 2015
  • Vulnerability assessment is a process to calculate the damage degree of a combat vehicle when the combat vehicle is attacked by an enemy. When the vehicle is hit, it is necessary to analyze the shot line to calculate which components are damaged and judge whether the armor of the vehicle is penetrated by enemy's warhead. To analyze the shot line efficiently, this paper presents the target modeling and the shot line analysis system to assess vulnerability of the ground combat vehicle. This system is easily able to do several functions: 1) the program reads STL files converted from CAD model which is designed by commercial CAD software. 2) It calculates the intersection between triangle of STL mesh and the shot line, and check if the components of the model are penetrated. 3) This program can visualize the results using OpenGL. The vulnerability assessment using the shot line analysis can be used to model the armor of the combat vehicle and arrange the inner components effectively in the early stage of development of the combat vehicle.

Multi-constrained optimization combining ARMAX with differential search for damage assessment

  • K, Lakshmi;A, Rama Mohan Rao
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.689-712
    • /
    • 2019
  • Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.

LIFE-SPAN SIMULATION AND DESIGN APPROACH FOR REINFORCED CONCRETE STRUCTURES

  • An, Xuehui;Maekawa, Koichi;Ishida, Tetsuya
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.3-17
    • /
    • 2007
  • This paper provides an introduction to life-span simulation and numerical approach to support the performance design processes of reinforced concrete structures. An integrated computational system is proposed for life-span simulation of reinforced concrete. Conservation of moisture, carbon dioxide, oxygen, chloride, calcium and momentum is solved with hydration, carbonation, corrosion, ion dissolution. damage evolution and their thermodynamic/mechanical equilibrium. Coupled analysis of mass transport and damage mechanics associated with steel corrosion is presented for structural performance assessment of reinforced concrete. Multi-scale modeling of micro-pore formation and transport phenomena of moisture and ions are mutually linked for predicting the corrosion of reinforcement and volumetric changes. The interaction of crack propagation with corroded gel migration can also be simulated. Two finite element codes. multi-chemo physical simulation code (DuCOM) and nonlinear dynamic code of structural reinforced concrete (COM3) were combined together to form the integrated simulation system. This computational system was verified by the laboratory scale and large scale experiments of damaged reinforced concrete members under static loads, and has been applied to safety and serviceability assessment of existing structures. Based on the damage details predicted by the nonlinear finite element analytical system, the life-span-cost of RC structures including the original construction costs and the repairing costs for possible damage during the service life can be evaluated for design purpose.

  • PDF

훈련용 워게임 모델의 다중해상도모델링 운영소요 및 전투21모델과 TMPS의 다중해상도 연동간 주요 이슈 해결 방안 연구 (Studies on the Operating Requirements of Multi-Resolution Modeling in Training War-Game Model and on the Solutions for Major Issues of Multi-Resolution Interoperation between Combat21 Model and TMPS)

  • 문호석;김수환
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.865-876
    • /
    • 2018
  • This study focuses on the operating requirements of multi-resolution modeling(MRM) in training war-game model and proposes solutions for major issues of multi-resolution interoperation between Combat21 model and tank multi-purpose simulator(TMPS). We study the operating requirements of MRM through interviews with defense M&S experts and literature surveys and report the various issues that could occur with low-resolution model Combat21 and high-resolution model TMPS linked, for example, when to switch objects, what information to exchange, what format to switch to, and how to match data resolutions. This study also addresses the purpose and concept of training using multi-resolution interoperation, role of each model included in multi-resolution interoperation, and issue of matching damage assessments when interoperated between models with different resolutions. This study will provide the common goals and directions of MRM research to MRM researchers, defense modeling & simulation organizations and practitioners.

Seismic fragility and risk assessment of an unsupported tunnel using incremental dynamic analysis (IDA)

  • Moayedifar, Arsham;Nejati, Hamid Reza;Goshtasbi, Kamran;Khosrotash, Mohammad
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.705-714
    • /
    • 2019
  • Seismic assessment of underground structures is one of the challenging problems in engineering design. This is because there are usually many sources of uncertainties in rocks and probable earthquake characteristics. Therefore, for decreasing of the uncertainties, seismic response of underground structures should be evaluated by sufficient number of earthquake records which is scarcely possible in common seismic assessment of underground structures. In the present study, a practical risk-based approach was performed for seismic risk assessment of an unsupported tunnel. For this purpose, Incremental Dynamic Analysis (IDA) was used to evaluate the seismic response of a tunnel in south-west railway of Iran and different analyses were conducted using 15 real records of earthquakes which were chosen from the PEER ground motion database. All of the selected records were scaled to different intensity levels (PGA=0.1-1.7 g) and applied to the numerical models. Based on the numerical modeling results, seismic fragility curves of the tunnel under study were derived from the IDA curves. In the next, seismic risk curve of the tunnel were determined by convolving the hazard and fragility curves. On the basis of the tunnel fragility curves, an earthquake with PGA equal to 0.35 g may lead to severe damage or collapse of the tunnel with only 3% probability and the probability of moderate damage to the tunnel is 12%.

취약면적법과 DMEA를 활용한 지상전투차량 유공압 현가장치의 취약성 평가 (The Vulnerability Assessment of Hydro-pneumatic Suspension of Ground Combat Vehicles Using Vulnerable Area Method and DMEA)

  • 남명훈;박강;박우성;유철
    • 한국CDE학회논문집
    • /
    • 제22권2호
    • /
    • pp.141-149
    • /
    • 2017
  • Vulnerability assesses the loss of major performance functions of GCV (Ground Combat Vehicles) when it is hit by enemy's shell. To decide the loss of major functions, it is determined what effects are on the performance of GCV when some components of GCV are failed. M&S (Modeling and Simulation) technology is used to vulnerability assessment. The hydro-pneumatic suspension is used as a sample part. The procedures of vulnerability assessment of the hydro-pneumatic suspension are shown as follows: 1) The components of the suspension are defined, and shot lines are generated evenly around the part. 2) The penetrated components are checked by using the penetration equation. 3) The function model of the suspension is designed by using IDEF0. 4) When the failure of the critical components of the suspension happens, its effect on the function of the suspension can be estimated using DMEA (Damage Mode and Effects Analysis). 5) The diagram of FTA (Fault Tree Analysis) is designed by exploiting DMEA. 6) The damage probability of the suspension is calculated by using FTA and vulnerable area method. In this paper, SLAP (Shot Line Analysis Program) which was developed based on COVART methodology. SLAP calculates the damage probability and visualizes the vulnerable areas of the suspension.

정적 변형률 데이터를 사용한 CNN 딥러닝 기반 PSC 교량 손상위치 추정 (CNN deep learning based estimation of damage locations of a PSC bridge using static strain data)

  • 한만석;신수봉;안효준
    • 한국BIM학회 논문집
    • /
    • 제10권2호
    • /
    • pp.21-28
    • /
    • 2020
  • As the number of aging bridges increases, more studies are being conducted on developing effective and reliable methods for the assessment and maintenance of bridges. With the advancement in new sensing systems and data learning techniques through AI technology, there is growing interests in how to evaluate bridges using these advanced techniques. This paper presents a CNN(Convolution Neural Network) deep learning based technique for evaluating the damage existence and for estimating the damage location in PSC bridges using static strain data. Simulation studies were conducted to investigate the proposed method with error analysis. Damage was simulated as the reduction in the stiffness of a finite element. A data learning model was constructed by applying the CNN technique as a type of deep learning. The damage status and its location were estimated using data set built through simulation. It was assumed that the strain gauges were installed in a regular interval under the PSC bridge girders. In order to increase the accuracy in evaluating damage, the squared error between the intact and measured strains are computed and applied for training the data model. Considering the damage occurring near the supports, the results of error analysis were compared according to whether strain data near the supports were included.