Sotoudehnia, Ebrahim;Shahabian, Farzad;Sani, Ahmad Aftabi
Smart Structures and Systems
/
v.23
no.1
/
pp.45-60
/
2019
This paper is devoted to proposing a new approach for damage detection of structures. In this technique, the biconjugate gradient method (BCG) is employed. To remedy the noise effects, a new preconditioning algorithm is applied. The proposed preconditioner matrix significantly reduces the condition number of the system. Moreover, based on the characteristics of the damage vector, a new direct search algorithm is employed to increase the efficiency of the suggested damage detection scheme by reducing the number of unknowns. To corroborate the high efficiency and capability of the presented strategy, it is applied for estimating the severity and location of damage in the well-known 31-member and 52-member trusses. For damage detection of these trusses, the time history responses are measured by a limited number of sensors. The results of numerical examples reveal high accuracy and robustness of the proposed method.
A damage detection method for the tripod support structure of offshore wind turbines is presented for structural health monitoring. A finite element model of a prototype tripod support structure is established and the modal properties are calculated. The degree and location of the damage are estimated based on the neural network technique using the changes of natural frequencies and mode shape due to the damage. The stress distribution occurring in the support structure is obtained by a dynamic analysis for the wind turbine system to select the output data of the neural network. The natural frequencies and mode shapes for 36 possible damage scenarios were used for the input data of the learned neural network for damage assessment. The estimated damages agreed reasonably well with the accurate ones. The presented method could be effectively applied for damage detection and structural health monitoring of various types of support structures of offshore wind turbines.
Journal of the Korean Society for Nondestructive Testing
/
v.29
no.4
/
pp.338-343
/
2009
Tomography is the imaging method of cross sectional area using multi beam signals and is mainly applied to the medical diagnosis to acquire the image of the inside human body. This method is pretty meaningful in nondestructive evaluation field since the imaging of the inspection region can enhance the comprehension of the inspector. Recently, much attention has been paid to the guided wave for the diagnosis of platelike structures. So, in this work, a study on the imaging of the damage location in a plate was carried out on the basis of computer aided analysis of guided waves and tomographic imaging. To this end, boundary element method was employed to analyze the effect of the damage in plate on the propagation of the guided waves and the analytic results were applied to the tomographic imaging method to identify the damage location. Consequently, it was shown that the number of sensors heavily affect the inspection performance of the damage location.
Dorvash, Siavash;Pakzad, Shamim N.;LaCrosse, Elizabeth L.
Smart Structures and Systems
/
v.14
no.2
/
pp.85-104
/
2014
Damage detection is a challenging, complex, and at the same time very important research topic in civil engineering. Identifying the location and severity of damage in a structure, as well as the global effects of local damage on the performance of the structure are fundamental elements of damage detection algorithms. Local damage detection is essential for structural health monitoring since local damages can propagate and become detrimental to the functionality of the entire structure. Existing studies present several methods which utilize sensor data, and track global changes in the structure. The challenging issue for these methods is to be sensitive enough in identifYing local damage. Autoregressive models with exogenous terms (ARX) are a popular class of modeling approaches which are the basis for a large group of local damage detection algorithms. This study presents an algorithm, called Influence-based Damage Detection Algorithm (IDDA), which is developed for identification of local damage based on regression of the vibration responses. The formulation of the algorithm and the post-processing statistical framework is presented and its performance is validated through implementation on an experimental beam-column connection which is instrumented by dense-clustered wired and wireless sensor networks. While implementing the algorithm, two different sensor networks with different sensing qualities are utilized and the results are compared. Based on the comparison of the results, the effect of sensor noise on the performance of the proposed algorithm is observed and discussed in this paper.
Sung, Seung Hun;Jung, Ho Youn;Lee, Jung Hoon;Jung, Hyung Jo
Journal of the Korean Society for Nondestructive Testing
/
v.34
no.6
/
pp.447-456
/
2014
In this paper, a new damage-detection method based on structural vibration is proposed. The essence of the proposed method is the detection of abrupt changes in rotation. Damage-induced rotation (DIR), which is determined from the modal flexibility of the structure, initially occurs only at a specific damaged location. Therefore, damage can be localized by evaluating abrupt changes in rotation. We conducted numerical simulations of two damage scenarios using a 10-story cantilever-type building model. Measurement noise was also considered in the simulation. We compared the sensitivity of the proposed method to localize damage to that of two conventional modal-flexibility-based damage-detection methods, i.e., uniform load surface (ULS) and ULS curvature. The proposed method was able to localize damage in both damage scenarios for cantilever structures, but the conventional methods could not.
To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.
Although unmanned aerial vehicles have been used to overcome the limited accessibility of human-based visual inspection, unresolved issues still remain. Onsite inspectors face difficulty finding previously detected damage locations and tracking their status onsite. For example, an inspector still marks the damage location on a target structure with chalk or drawings while comparing the current status of existing damages to their previous status, as documented onsite. In this study, an augmented-reality-based structural inspection system with onsite damage information marking was developed to enhance the convenience of inspectors. The developed system detects structural damage, creates a holographic marker with damage information on the actual physical damage, and displays the marker onsite via an augmented reality headset. Because inspectors can view a marker with damage information in real time on the display, they can easily identify where the previous damage has occurred and whether the size of the damage is increasing. The performance of the developed system was validated through a field test, demonstrating that the system can enhance convenience by accelerating the inspector's essential tasks such as detecting damages, measuring their size, manually recording their information, and locating previous damages.
Journal of the Korea institute for structural maintenance and inspection
/
v.24
no.6
/
pp.206-216
/
2020
As the number of aging railway bridges in Korea increases, maintenance costs due to aging are increasing and continuous management is becoming more important. However, while the number of old facilities to be managed increases, there is a shortage of professional personnel capable of inspecting and diagnosing these old facilities. To solve these problems, this study presents an improved model that can detect Local damage to structures using machine learning techniques of AI technology. To construct a damage detection machine learning model, an analysis model of the bridge was set by referring to the design drawing of a non-ballasted plate-girder railroad bridge. Static strain data according to the damage scenario was extracted with the analysis model, and the Local damage index based on the reliability of the bridge was presented using statistical techniques. Damage was performed in a three-step process of identifying the damage existence, the damage location, and the damage severity. In the estimation of the damage severity, a linear regression model was additionally considered to detect random damage. Finally, the random damage location was estimated and verified using a machine learning-based damage detection classification learning model and a regression model.
International Journal of Aeronautical and Space Sciences
/
v.14
no.1
/
pp.19-29
/
2013
This paper deals with the study of buckling, vibration, and parametric instability characteristics in a damaged cross-ply and angle-ply laminated plate like beam under in-plane harmonic loading, using the finite element approach. Damage is modelled using an anisotropic damage formulation, based on the concept of reduction in stiffness. The effect of damage on free vibration and buckling characteristics of a thin plate like beam has been studied. It has been observed that damage shows a strong orthogonality and in general deteriorates the static and dynamic characteristics. For the harmonic type of loading, analysis was carried out on a thin plate like beam by solving the governing differential equation which is of Mathieu-Hill type, using the method of multiple scales (MMS). The effects of damage and its location on dynamic stability characteristics have been presented. The results indicate that, compared to the undamaged plate like beam, heavily damaged beams show steeper deviations in simple and combination resonance characteristics.
The present paper deals with the identification of a concentrated damage in an elastic parabolic arch through the minimization of an objective function which measures the differences between numerical and experimental values of static displacements. The damage consists in a notch that reduces the height of the cross section at a given abscissa and therefore causes a variation in the flexural stiffness of the structure. The analytical values of static displacements due to applied loads are calculated by means of the principle of virtual work for both the undamaged and damaged arch. First, pseudo-experimental data are used to study the inverse problem and investigate whether a unique solution can occur or not. Various damage intensities are considered to assess the reliability of the identification procedure. Then, the identification procedure is applied to an experimental case, where displacements are measured on a prototype arch. The identified values of damage parameters, i.e., location and intensity, are compared to those obtained by means of a dynamic identification technique performed on the same structure.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.