• Title/Summary/Keyword: damage imaging technique

Search Result 56, Processing Time 0.033 seconds

Lamb wave-based damage imaging method for damage detection of rectangular composite plates

  • Qiao, Pizhong;Fan, Wei
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.411-425
    • /
    • 2014
  • A relatively low frequency Lamb wave-based damage identification method called damage imaging method for rectangular composite plate is presented. A damage index (DI) is generated from the delay matrix of the Lamb wave response signals, and it is used to indicate the location and approximate area of the damage. The viability of this method is demonstrated by analyzing the numerical and experimental Lamb wave response signals from rectangular composite plates. The technique only requires the response signals from the plate after damage, and it is capable of performing near real time damage identification. This study sheds some light on the application of Lamb wave-based damage detection algorithm for plate-type structures by using the relatively low frequency (e.g., in the neighborhood of 100 kHz, more suitable for the best capability of the existing fiber optic sensor interrogator system with the sampling frequency of 500 kHz) Lamb wave response and a reference-free damage detection technique.

3D Microwave Imaging Technology for Damage Detection of Concrete Structures (콘크리트 구조물의 결함발견을 위한 3차원 초단파 영상처리기법의 개발)

  • Kim, Yoo-Jin;Kim, Yong-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.98-104
    • /
    • 2003
  • Various nondestructive evaluation (NDE) techniques have been studied to locate steel rebars of dowel, and to detect invisible damage such as voids and cracks inside concrete and debonding between rebars and concrete caused by corrosions and earthquakes. In this study, the aurhors developed 3-dimensional (3D) electromagnetic (EM) imaging technology to detect such damage and to identify exact location of steel rebars of dowel. The authors have developed sub-surface two-dimensional (2D) imaging technique using tomographic antenna array in previous works. In this study, extending the earlier analytical and experimental works on 2D image reconstruction, a 3D microwave imaging system using tomographic antenna array was developed, and multi-frequency technique was applied to improve quality of the reconstructed image and to reduce background noises. This paper presents the analytical expressions of numerical focusing procedures for 3D image reconstruction and numerical simulation to study the resolution of the system and the effectiveness of multi-frequency technique. Also, the design of 4?4 antenna array with switching devices is introduced as a preliminary study for the final design of whole array.

Structural Damage Detection by Using the Time-Reversal Process of Lamb Waves and the Imaging Method (Lamb파의 시간-반전과정 및 이미지기법을 이용한 손상탐지)

  • Jun, Yong-Ju;Lee, U-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.320-326
    • /
    • 2011
  • This paper proposes a baseline-free SHM technique in which the time-reversal process of Lamb waves and the imaging method are used. The proposed SHM technique has three distinct features when compared with the authors' previously proposed one: (1) It use the reconstructed signal for damage diagnosis, without need to extract the damage signal as the difference between reconstructed signal and initial input signal; (2) It use the imaging method based on the time-offlight information from the reconstructed signal, instead of using a pattern comparison method; (3) In order to make the damage image more clear, the modified mathematical definition of damage image in a pixel is used. The proposed SHM technique is evaluated through the damage detection experiment for an aluminum plate with damage at different locations.

A pre-stack migration method for damage identification in composite structures

  • Zhou, L.;Yuan, F.G.;Meng, W.J.
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.439-454
    • /
    • 2007
  • In this paper a damage imaging technique using pre-stack migration is developed using Lamb (guided) wave propagation in composite structures for imaging multi damages by both numerical simulations and experimental studies. In particular, the paper focuses on the experimental study using a finite number of sensors for future practical applications. A composite laminate with a surface-mounted linear piezoelectric ceramic (PZT) disk array is illustrated as an example. Two types of damages, one straight-crack damage and two simulated circular-shaped delamination damage, have been studied. First, Mindlin plate theory is used to model Lamb waves propagating in laminates. The group velocities of flexural waves in the composite laminate are also derived from dispersion relations and validated by experiments. Then the pre-stack migration technique is performed by using a two-dimensional explicit finite difference algorithm to back-propagate the scattered energy to the damages and damages are imaged together with the excitation-time imaging conditions. Stacking these images together deduces the resulting image of damages. Both simulations and experimental results show that the pre-stack migration method is a promising method for damage identification in composite structures.

Subsurface Imaging Technology For Damage Detection of Concrete Structures Using Microwave Antenna Array (안테나배열을 이용한 콘크리트부재 내부의 비파괴시험과 영상화방법 개발)

  • Kim, Yoo-Jin;Choi, Ko-Il;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.1-8
    • /
    • 2005
  • Microwave tomographic imaging technology using a bi-focusing operator has been developed in order to detect the internal voids/objects inside concrete structures. The imaging system consists of several cylindrical or planar array antennas for transmitting and receiving signals, and a numerical focusing operator is applied to the external signals both in transmitting and in receiving fields. In this study, the authors developed 3-dimensional (3D) electromagnetic (EM) imaging technology to detect such damage and to identify exact location of steel rebars or dowel. The authors have developed sub-surface two-dimensional (2D) imaging technique using tomographic antenna array in previous works. In this study, extending the earlier analytical and experimental works on 2D image reconstruction, a 3D microwave imaging system using tomographic antenna way was developed, and multi-frequency technique was applied to improve quality of the reconstructed image and to reduce background noises. Numerical simulation demonstrated that a sub-surface image can be successfully reconstructed by using the proposed tomographic imaging technology. For the experimental verification, a prototype antenna array was fabricated and tested on a concrete specimen.

Structural Damage Diagnosis Method by Using the Time-Reversal Property of Guided Waves (유도초음파의 시간.역전 현상을 활용한 구조손상 진단기법)

  • Lee, U-Sik;Choi, Jung-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.64-74
    • /
    • 2010
  • This paper proposes a new TR-based baseline-free SHM technique in which the time-reversal (TR) property of the guided Lamb waves is utilized. The new TR-based SHM technique has two distinct features when compared with the other TR-based SHM techniques: (1) The backward TR process commonly conducted by the measurement is replaced by the computation-based process; (2) In place of the comparison method, the TOF information of the damage signal extracted from the reconstructed signal is used for the damage diagnosis in conjunction with the imaging method which enables us to represent the damage as an image. The proposed TR-based SHM technique is then validated through the damage diagnosis experiment for an aluminum plate with a damage at different locations.

A Guided Wave-Based Structural Damage Detection Method for Structural Health Monitoring (구조물의 건전성 모니터링을 위한 유도초음파 응용 구조손상 탐지기법)

  • Go, Han-Suk;Lee, U-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.412-419
    • /
    • 2009
  • How to efficiently and accurately detect the damages generated in a structure has become an important issue for structural health monitoring (SHM). Most existing SHM techniques require the baseline data which should be measured before a structure get damaged. Thus, this paper presents a new pitch-catch method-based SHM technique which will not require the baseline data any more. In the proposed SHM technique, the imaging method is also utilized to visualize damage locations. The proposed SHM technique is then validated through the damage detection texts for damaged aluminum plates.

Imaging Magnetic Flux Leakage based Steel Plate Damage for Steel Structure Diagnosis (강구조물 진단을 위한 누설자속 기반 강판 손상의 이미지화)

  • Kim, Hansun;Kim, Ju-Won;Yu, Byoungjoon;Kim, Wonkyu;Park, Seunghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, the magnetic flux leakage technique was applied to diagnose steel plate damage, imaging technique was applied through those signals. Steel plate specimens with different thicknesses were prepared for the imaging the magnetic flux leakage signal, and 6 different depths of damage were artificially processed at the same locations on each specimen. The sensor head consist hall sensor and magnetization yoke was fabricated to magnetize the steel plate specimen and measure the magnetic flux leakage signal. In order to remove the noise and increase the resolution of the image in the signal collected from the hall sensor, various of signal processing was performed. P-P value was analyzed for each channel to analyze the magnetic flux leakage signals measured from each damaged part. Based on the above processed signals and analysis, it was converted into heatmap image. Through this, it was possible to identify the damage on the steel plate at glance by imaging magnetic flux leakage signal.

Noninvasive Depthwise Temperature Measurement in Skin Tissue Using Laser Speckle Imaging Technique (레이저 스펙클 이미징 기법을 이용한 피부 조직의 깊이 방향 비침습적 온도 측정)

  • Jakir Hossain Imran;Noemi Correa;Jung Kyung Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.74-81
    • /
    • 2024
  • Accurate tissue temperature monitoring during clinical procedures, such as laser therapy or surgery, is crucial for ensuring patient safety and treatment efficacy. Noninvasive techniques are essential to prevent tissue disturbance while providing real-time temperature data. However, current methods often struggle to accurately measure temperature at various depths within the skin, which is essential to avoid damage to surrounding healthy tissues due to excessive heat. In response to this challenge, we developed a confocal imaging system that utilizes the laser speckle imaging (LSI) technique for precise depthwise temperature monitoring. LSI uses laser light scattering to capture subtle changes in speckle patterns on the skin's surface due to temperature fluctuations within the tissue. By analyzing these changes, LSI enables accurate depth-resolved temperature measurements. This technique enhances the precision and safety of medical procedures, offering significant potential for broader clinical applications, improved patient outcomes, and better thermal management during interventions.

An Adaptive Filtering Technique for Vibration Reduction of a Rotational LOS Control System and Frequency Noise Reduction of an Imaging System (적응형 필터링 기법을 이용한 회전형 시선제어시스템의 진동 저감 및 영상 주파수노이즈 저감 기법)

  • Kim, Byeong-Hak;Kim, Min-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.10
    • /
    • pp.1014-1022
    • /
    • 2014
  • In mechatronic systems using electric signals to drive control systems, driving signals including the frequency band of the unwanted signals, such as resonant frequencies and noise frequencies, can affect the accuracy of the controlled system and can cause serious damage to the system due to the resonance phenomenon of the mechatronic system. An LOS (Line of Sight) control unit is used to automatically rotate the gimbal system with a video imaging system generally mounted on modern aerial vehicles. However, it still suffers from natural frequency variation problems due to variations of operational temperature. To prevent degradation in performance, this paper proposes an adaptive filtering technique based on real-time noise analysis and adaptive notch-filtering for LOS control systems, and verifies how our proposed method maintains the LOS stabilization performance. Additionally, this filtering technique can be applied to the image noise filtering of the video imaging system. It is designed to reduce image noises generated by switching circuits or power sources. The details of design procedures of the proposed filtering technique and the experiments for the performance verification are described in this paper.