• Title/Summary/Keyword: damage estimation

Search Result 926, Processing Time 0.027 seconds

A Study on the Damage Estimation of CFRP using Acoustic Emission (음향방출을 이용한 탄소섬유강화 플라스틱의 손상 평가에 관한 연구)

  • 이장규;박성완;김봉각
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.307-312
    • /
    • 2003
  • The object of this study is to investigate a damage estimation of single edge cracked tensile specimens ($2_a$/W) as a function of acoustic emission (AE) according to the unidirectionally oriented carbon/epoxy composites, CFRP AE signals were analyzed and classified 3 regions by event counts, energy and amplitude for coressponding applied load. On tensile loading and using the results of the AE analysis, it was found that the event counts, cumulative counts or energy, and amplitude distributions useful for the prediction of damage failure.

  • PDF

An Empirical Study on the Cost Behavior in Coastal Fishery (연안어선어업 피해율 산정을 위한 원가행태에 관한 실증연구)

  • Kim, Woo-Soo;Kim, Kil-Yong
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.3
    • /
    • pp.1-13
    • /
    • 2011
  • It is necessary to set up a standard of estimation for annual unit price of sale and cost, damage rate for calculating compensation against fishery damage objectively. Two items on the unit price and cost have regulations but the damage rate has not, so it may occurred some problems such as reasonability and balance because the estimation should be handling by an appraiser's knowledge and experience. This study has analyzed using Regression model and searched variable costs and fixed costs about each items appraisers to operate in the present. It is compare profit damage index is calculated by an estimated model and an appraised example. This analysis showed highly 23-30% estimated model more than appraised example. It means the overestimation for fishery damage. This difference has caused by limited data, lack of sample, much difference in the standard deviation, and has not classified each kind of business and weight of coastal fishery, the overestimation more than what expected. This study has analyzed that the applied rate of fixed and variable cost in relation to the compensation in the cost of coastal fishery is very valuable.

Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

  • Lee, Jong Kyeom;Kim, Tae Yun;Kim, Hyun Su;Chai, Jang-Bom;Lee, Jin Woo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1280-1290
    • /
    • 2016
  • This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

Simulation-Based Damage Estimation of Helideck Using Artificial Neural Network (인공 신경망을 사용한 시뮬레이션 기반 헬리데크 손상 추정)

  • Kim, Chanyeong;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.359-366
    • /
    • 2020
  • In this study, a simulation-based damage estimation method for helidecks is proposed using an artificial neural network. The structural members that share a connecting node in the helideck are regarded as a damage group, and a total of 37,400 damage scenarios are numerically generated by applying randomly assigned damage to up to three damage groups. Modal analysis is then performed for all the damage scenarios, which are selectively used as either training or validation or verification sets based on the purpose of use. An artificial neural network with three hidden layers is constructed using a PyTorch program to recognize the patterns of the modal responses of the helideck model under both damaged and undamaged states, and the network is successively trained to minimize the loss function. Finally, the estimated damage rate from the proposed artificial neural network is compared to the actual assigned damage rate using 400 verification scenarios to show that the neural network is able to estimate the location and amount of structural damage precisely.

Development of Earthquake Damage Estimation System and its Result Transmission by Engineering Test Satellite for Supporting Emergency

  • Jeong, Byeong-Pyo;Hosokawa, Masafumi;Takizawa, Osamu
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.12-19
    • /
    • 2011
  • Drawing on its extensive experience with natural disasters, Japan has been dispatching Japan Disaster Relief (JDR) team to disaster-stricken countries to provide specialist assistance in rescue and medical operations. The JDR team has assisted in the wake of disasters including the 2004 Indian Ocean Earthquake and the 2008 Sichuan Earthquake in China. Information about the affected area is essential for a rapid disaster response. However, it can be difficult to gather information on damages in the immediate post-disaster period. To help overcome this problem, we have built on an Earthquake Damage Estimation System. This system makes it possible to produce distributions of the earthquake's seismic intensity and structural damage based on pre-calculated data such as landform and site amplification factors for Peak Ground Velocity, which are estimated from a Digital Elevation Model, as well as population distribution. The estimation result can be shared with the JDR team and with other international organizations through communications satellite or the Internet, enabling more effective rapid relief operations.

  • PDF

A STUDY ON THE ANALYSIS OF DAMAGE ESTIMATION USING AERIAL IMAGES FOR FUTURE KOMPSAT-3 APLLICATION

  • Yun, Kong-Hyun;Sohn, Hong-Gyoo;Cho, Hyoung-Sig
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.515-517
    • /
    • 2007
  • In this study we attempted to estimate damage scope such as bridges destruction, farmland deformation, forest damage, etc occurred by typhoon using two digital aerial images for future high-resolution Kompsat-3 applications. The process procedures are followings: First, image registration between time-different aerial images was implemented. In this process one image was geometrically corrected by image-to-image registration. Second, image classification was done according to 4 classes. Finally through the comparison of classified two images the area of damage by flood and storm was approximately calculated. These results showed that it is possible to estimate the damage scale relatively rapidly using high-resolution images.

  • PDF

Estimation of Creep Cavities Using Neural Network and Progressive Damage Modeling (신경회로망과 점진적 손상 모델링을 이용한 크리프 기공의 평가)

  • Jo, Seok-Je;Jeong, Hyeon-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.455-463
    • /
    • 2000
  • In order to develop nondestructive techniques for the quantitative estimation of creep damage a series of crept copper samples were prepared and their ultrasonic velocities were measured. Velocities measured in three directions with respect to the loading axis decreased nonlinearly and their anisotropy increased as a function of creep-induced porosity. A progressive damage model was described to explain the void-velocity relationship, including the anisotropy. The comparison of modeling study showed that the creep voids evolved from sphere toward flat oblate spheroid with its minor axis aligned along the stress direction. This model allowed us to determine the average aspect ratio of voids for a given porosity content. A novel technique, the back propagation neural network (BPNN), was applied for estimating the porosity content due to the creep damage. The measured velocities were used to train the BP classifier, and its accuracy was tested on another set of creep samples containing 0 to 0.7 % void content. When the void aspect ratio was used as input parameter together with the velocity data, the NN algorithm provided much better estimation of void content.

Health Monitoring Method for Monopile Support Structure of Offshore Wind Turbine Using Committee of Neural Networks (군집 신경망기법을 이용한 해상풍력발전기 지지구조물의 건전성 모니터링 기법)

  • Lee, Jong Won;Kim, Sang Ryul;Kim, Bong Ki;Lee, Jun Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.347-355
    • /
    • 2013
  • A damage estimation method for monopile support structure of offshore wind turbine using modal properties and committee of neural networks is presented for effective structural health monitoring. An analytical model for a monopile support structure is established, and the natural frequencies, mode shapes, and mode shape slopes for the support structure are calculated considering soil condition and added mass. The input to the neural networks consists of the modal properties and the output is composed of the stiffness indices of the support structure. Multiple neural networks are constructed and each individual network is trained independently with different initial synaptic weights. Then, the estimated stiffness indices from different neural networks are averaged. Ten damage cases are estimated using the proposed method, and the identified damage locations and severities agree reasonably well with the exact values. The accuracy of the estimation can be improved by applying the committee of neural networks which is a statistical approach averaging the damage indices in the functional space.

Development of Damage Estimation Method using Divided Elastic Waves in Flexible Concrete Element (콘크리트 휨 부재에서의 탄성파 분리를 이용한 손상 추정법 개발)

  • Ko, Kwan-Ho;Kim, Sung-Hyun;Kim, Ie-Sung;Kim, Wha-Jung
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.179-183
    • /
    • 2008
  • Methods of damage detection are used non-destructive test in concrete structures. These are using various sensors, but the most of damage detections are used a visual angle of human. Problems of crack damage detection are occurred to directions and boundary conditions of steel bars using accelerometer in concrete element. In this study, fundamental studies for estimation using 3 axial type of accelerometer and electric resistance property of thermocouple sensors are discussed estimation to effect of arranged steel bars and damage from low strength when they are oscillated elastic wave in concrete specimen.

  • PDF

Simplified planar model for damage estimation of interlocked caisson system

  • Huynh, Thanh-Canh;Lee, So-Young;Kim, Jeong-Tae;Park, Woo-Sun;Han, Sang-Hun
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.441-463
    • /
    • 2013
  • In this paper, a simplified planar model is developed for damage estimation of interlocked caisson systems. Firstly, a conceptual dynamic model of the interlocked caisson system is designed on the basis of the characteristics of existing harbor caisson structures. A mass-spring-dashpot model allowing only the sway motion is formulated. To represent the condition of interlocking mechanisms, each caisson unit is connected to adjacent ones via springs and dashpots. Secondly, the accuracy of the planar model's vibration analysis is numerically evaluated on a 3-D FE model of the interlocked caisson system. Finally, the simplified planar model is employed for damage estimation in the interlocked caisson system. For localizing damaged caissons, a damage detection method based on modal strain energy is formulated for the caisson system.