• Title/Summary/Keyword: damage detection

Search Result 1,618, Processing Time 0.034 seconds

A two-stage damage detection approach based on subset selection and genetic algorithms

  • Yun, Gun Jin;Ogorzalek, Kenneth A.;Dyke, Shirley J.;Song, Wei
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.1-21
    • /
    • 2009
  • A two-stage damage detection method is proposed and demonstrated for structural health monitoring. In the first stage, the subset selection method is applied for the identification of the multiple damage locations. In the second stage, the damage severities of the identified damaged elements are determined applying SSGA to solve the optimization problem. In this method, the sensitivities of residual force vectors with respect to damage parameters are employed for the subset selection process. This approach is particularly efficient in detecting multiple damage locations. The SEREP is applied as needed to expand the identified mode shapes while using a limited number of sensors. Uncertainties in the stiffness of the elements are also considered as a source of modeling errors to investigate their effects on the performance of the proposed method in detecting damage in real-life structures. Through a series of illustrative examples, the proposed two-stage damage detection method is demonstrated to be a reliable tool for identifying and quantifying multiple damage locations within diverse structural systems.

Damage detection of mono-coupled multistory buildings: Numerical and experimental investigations

  • Xu, Y.L.;Zhu, Hongping;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.709-729
    • /
    • 2004
  • This paper presents numerical and experimental investigations on damage detection of mono-coupled multistory buildings using natural frequency as only diagnostic parameter. Frequency equation of a mono-coupled multistory building is first derived using the transfer matrix method. Closed-form sensitivity equation is established to relate the relative change in the stiffness of each story to the relative changes in the natural frequencies of the building. Damage detection is then performed using the sensitivity equation with its special features and minimizing the norm of an objective function with an inequality constraint. Numerical and experimental investigations are finally conducted on a mono-coupled 3-story building model as an application of the proposed algorithm, in which the influence of modeling error on the degree of accuracy of damage detection is discussed. A mono-coupled 10-story building is further used to examine the capability of the proposed algorithm against measurement noise and incomplete measured natural frequencies. The results obtained demonstrate that changes in story stiffness can be satisfactorily detected, located, and quantified if all sensitive natural frequencies to damaged stories are available. The proposed damage detection algorithm is not sensitive to measurement noise and modeling error.

Modal Strain Energy-based Damage Detection in Beam Structures using Three Different Sensor Types (보구조물의 모드변형에너지기반 손상 검색: 3가지 타입 센서의 비교)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.680-683
    • /
    • 2011
  • This study deals with damage detection in beam structure by using modal strain energy-based technique with three different sensor types: accelerometer, lead zirconate titanate (PZT) piezoelectric sensor and electrical strain gage. First, the use of direct piezoelectric effect of PZT sensor for dynamic strain response are presented. Next, a modal strain energy-based damage detection method is outlined. For validation, forced vibration tests are carried out on lab-scale aluminum cantilever beam. The dynamic responses are measured for several damage scenarios. Based on damage localization results, the performance of three different sensor types is evaluated.

  • PDF

Damage Detection in Truss Structures Using Deep Learning Techniques (딥러닝 기술을 이용한 트러스 구조물의 손상 탐지)

  • Lee, Seunghye;Lee, Kihak;Lee, Jaehong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.93-100
    • /
    • 2019
  • There has been considerable recent interest in deep learning techniques for structural analysis and design. However, despite newer algorithms and more precise methods have been developed in the field of computer science, the recent effective deep learning techniques have not been applied to the damage detection topics. In this study, we have explored the structural damage detection method of truss structures using the state-of-the-art deep learning techniques. The deep neural networks are used to train knowledge of the patterns in the response of the undamaged and the damaged structures. A 31-bar planar truss are considered to show the capabilities of the deep learning techniques for identifying the single or multiple-structural damage. The frequency responses and the elasticity moduli of individual elements are used as input and output datasets, respectively. In all considered cases, the neural network can assess damage conditions with very good accuracy.

Damage Detection of Plate Using Long Continuous Sensor and Wave Propagation (연속형 센서와 웨이브 전파를 이용한 판 구조물의 손상감지)

  • Lee, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.272-278
    • /
    • 2010
  • A method for damage detection in a plate structure is presented based on strain waves that are generated by impact or damage in the structure. Strain responses from continuous sensors, which are long ribbon-like sensors made from piezoceramic fibers or other materials, were used with a neural network technique to estimate the damage location. The continuous sensor uses only a small number of channels of data acquisition and can cover large areas of the structure. A grid type structural neural system composed of the continuous sensors was developed for effective damage localization in a plate structure. The ratios of maximum strains and arrival times of the maximum strains obtained from the continuous sensors were used as input data to a neural network. Simulated damage localizations on a plate were carried out and the identified damage locations agreed reasonably well with the exact damage locations.

Probabilistic damage detection of structures with uncertainties under unknown excitations based on Parametric Kalman filter with unknown Input

  • Liu, Lijun;Su, Han;Lei, Ying
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.779-788
    • /
    • 2017
  • System identification and damage detection for structural health monitoring have received considerable attention. Various time domain analysis methodologies based on measured vibration data of structures have been proposed. Among them, recursive least-squares estimation of structural parameters which is also known as parametric Kalman filter (PKF) approach has been studied. However, the conventional PKF requires that all the external excitations (inputs) be available. On the other hand, structural uncertainties are inevitable for civil infrastructures, it is necessary to develop approaches for probabilistic damage detection of structures. In this paper, a parametric Kalman filter with unknown inputs (PKF-UI) is proposed for the simultaneous identification of structural parameters and the unmeasured external inputs. Analytical recursive formulations of the proposed PKF-UI are derived based on the conventional PKF. Two scenarios of linear observation equations and nonlinear observation equations are discussed, respectively. Such a straightforward derivation of PKF-UI is not available in the literature. Then, the proposed PKF-UI is utilized for probabilistic damage detection of structures by considering the uncertainties of structural parameters. Structural damage index and the damage probability are derived from the statistical values of the identified structural parameters of intact and damaged structure. Some numerical examples are used to validate the proposed method.

Influence of sharp stiffness variations in damage evaluation using POD and GSM

  • Thiene, M.;Galvanetto, U.;Surace, C.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.569-594
    • /
    • 2014
  • Damage detection methods based on modal analysis have been widely studied in recent years. However the calculation of mode shapes in real structures can be time consuming and often requires dedicated software programmes. In the present paper the combined application of proper orthogonal decomposition and gapped smoothing method to structural damage detection is presented. The first is used to calculate the dynamic shapes of a damaged structural element using only the time response of the system while the second is used to derive a reference baseline to which compare the data coming from the damaged structure. Experimental verification is provided for a beam case while numerical analyses are conducted on plates. The introduction of a stiffener on a plate is investigated and a method to distinguish its influence from that of a defect is presented. Results highlight that the derivatives of the proper orthogonal modes are more effective damage indices than the modes themselves and that they can be used in damage detection when only data from the damaged structure are available. Furthermore the stiffened plate case shows how the simple use of the curvature is not sufficient when analysing complex components. The combined application of the two techniques provides a possible improvement in damage detection of typical aeronautical structures.

Condition assessment of stay cables through enhanced time series classification using a deep learning approach

  • Zhang, Zhiming;Yan, Jin;Li, Liangding;Pan, Hong;Dong, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.105-116
    • /
    • 2022
  • Stay cables play an essential role in cable-stayed bridges. Severe vibrations and/or harsh environment may result in cable failures. Therefore, an efficient structural health monitoring (SHM) solution for cable damage detection is necessary. This study proposes a data-driven method for immediately detecting cable damage from measured cable forces by recognizing pattern transition from the intact condition when damage occurs. In the proposed method, pattern recognition for cable damage detection is realized by time series classification (TSC) using a deep learning (DL) model, namely, the long short term memory fully convolutional network (LSTM-FCN). First, a TSC classifier is trained and validated using the cable forces (or cable force ratios) collected from intact stay cables, setting the segmented data series as input and the cable (or cable pair) ID as class labels. Subsequently, the classifier is tested using the data collected under possible damaged conditions. Finally, the cable or cable pair corresponding to the least classification accuracy is recommended as the most probable damaged cable or cable pair. A case study using measured cable forces from an in-service cable-stayed bridge shows that the cable with damage can be correctly identified using the proposed DL-TSC method. Compared with existing cable damage detection methods in the literature, the DL-TSC method requires minor data preprocessing and feature engineering and thus enables fast and convenient early detection in real applications.

Improved Genetic Algorithm-Based Damage Detection Technique Using Natural Frequency and Modal Strain Energy (고유진동수와 모드변형에너지를 이용한 향상된 유전알고리즘 기반 손상검색기법)

  • Park Jae-Hyung;Ryu Yeon-Sun;Yi Jin-Hak;Kim Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.313-322
    • /
    • 2006
  • In the genetic algoricm (GA) based damage detection methods using vibration of structures, the selection of modal properties is important to improve the accuracy of damage detection. The objective of this study is to improve the accuracy of damage detection using natural frequency and modal strain energy, The following approaches are used to achieve the goal. First, modal strain energy is formulated and a new GA-based damage detection technique using natural frequency and modal strain energy is proposed. Next, to verify the efficiency of proposed technique, damage scenarios for free-free beam are designed and vibration modal tests of the target structure are conducted. Finally, the feasibility of the proposed technique is verified in comparison with other GA-based damage detection technique using natural frequency and mode shape.

Damage detection for truss or frame structures using an axial strain flexibility

  • Yan, Guirong;Duan, Zhongdong;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.291-316
    • /
    • 2009
  • Damage detection using structural classical deflection flexibility has received considerable attention due to the unique features of the flexibility in the last two decades. However, for relatively complex structures, most methods based on classical deflection flexibility fail to locate damage sites to the exact members. In this study, for structures whose members are dominated by axial forces, such as truss structures, a more feasible flexibility for damage detection is proposed, which is called the Axial Strain (AS) flexibility. It is synthesized from measured modal frequencies and axial strain mode shapes which are expressed in terms of translational mode shapes. A damage indicator based on AS flexibility is proposed. In addition, how to integrate the AS flexibility into the Damage Location Vector (DLV) approach (Bernal and Gunes 2004) to improve its performance of damage localization is presented. The methods based on AS flexbility localize multiple damages to the exact members and they are suitable for the cases where the baseline data of the intact structure is not available. The proposed methods are demonstrated by numerical simulations of a 14-bay planar truss and a five-story steel frame and experiments on a five-story steel frame.