• Title/Summary/Keyword: damage conditions

Search Result 2,418, Processing Time 0.035 seconds

Application of Arbitrary Lagrangian-Eulerian Technique for Air Explosion Structural Analysis for Naval Ships Using LS-DYNA

  • Kim Jae-Hyun;Shin Hyung-Cheol;Park Myung-Kyu
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • Survivability improvement method for naval ship design has been continually developed. In order to design naval ships considering survivability, it is demanded that designers should establish reasonable damage conditions by air explosion. Explosion may induce local damage as well as global collapse to the ship. Therefore possible damage conditions should be realistically estimated in the design stage. In this study the authors used ALE technique, one of the structure-fluid interaction techniques, to simulate air explosion and investigated survival capability of damaged naval ships. Lagrangian-Eulerian coupling algorithm, equation of the state for explosive and air, and simple calculation method for explosive loading were also reviewed. It is shown that air explosion analysis using ALE technique can evaluate structural damage after being attacked. This procedure can be applied to the real structural design quantitatively by calculating surviving time and probability.

Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures

  • Wu, Jian-Ying;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.519-540
    • /
    • 2007
  • In this paper, the energy-based plastic-damage model previously proposed by the authors [International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under dynamic loadings, within the framework of continuum damage mechanics a new damping model is proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified constitutive model which is capable of directly considering the damping on the material scale. Pertinent computational aspects concerning the numerical implementation and the algorithmic consistent modulus for the unified model are also discussed in details, through which the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as those without damping. The proposed unified plastic-damage model is verfied by the simulations of concrete specimens under different quasistatic and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/or reported by other investigators, demonstrating its capability for reproducing most of the typical nonlinear performances of concrete under quasi-static and dynamic loading conditions.

Assessment of casting parts fatigue life for 3MW offshore wind turbine (3MW 해상풍력발전기 주물품의 내구수명 평가)

  • Roh, Gitae;Kang, Wonhyoung;Lee, Seongchan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.189.2-189.2
    • /
    • 2010
  • The purpose of this study is fatigue damage assessment for large sized casting parts (hub and mainframe) of the 3MW offshore wind turbine by computer simulation. Hub and mainframe durability assessment is necessary because wind turbine have to guarantee for 20 years. Fatigue life evaluation must be considered all of fatigue load conditions as the components are wind load transmission path. Palmgren-Miner linear damage accumulation hypothesis is applied for fatigue life estimation with stress-life approach. S-N curve for the spheroid graphite cast iron EN-GJS-400-18-LT is derived according to durability guidelines. Reduction factors were applied for survival probability, surface roughness, material quality and partial safety factor according to Germanischer Lloyd rules. To calculate fatigue damage, stress tensors, extracted from the unity load calculation from ANSYS is multiplied with time track of fatigue loads extracted from GH bladed. Damage accumulation is performed with all of fatigue load conditions at each finite element nodes. In this study maximum nodal damage value is under 1.0. casted parts are safe. This research was financially supported by the Ministry of Knowledge Economy(MKE), Korea Institute for Advancement of Technology(KIAT) and Honam Leading Industry Office through the Leading Industry Development for Economic Region.

  • PDF

Prediction of Crack Initiation and Its Application to the Design of Lead Screw Thread Rolling Process (Crack 발생 예측을 통한 Lead Screw 전조공정설계)

  • Shin, M.S.;Cha, S.H.;Kim, J.B.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.160-166
    • /
    • 2010
  • In this paper, the process parameters of thread rolling were designed based on the numerical analysis results. Firstly, the effective analysis conditions that guarantee the reliability of the analysis results were found. To find the effective analysis conditions, the analyses were carried out for various numbers of teeth. And then, the effects of the process parameters such as tool shape and temperature on the thread rolling performance were investigated. The formability in thread rolling process was evaluated in terms of Cockcroft-Latham damage value. In order to evaluate formability, Cockcroft-Latham damage value was normalized by the critical damage value which was obtained from the analysis of uniaxial tensile test. The analyses were carried out using DEFORM-3D. The results showed that the flank angle and crest round had an effect on the thread rolling load. It was also shown that temperature had significant effects on the effective strain distribution, rolling load, and damage. With the reduced formability of stainless steel at higher temperature, it was shown that the normalized damage values increased as the process temperature.

Damage Behavior of Singly Oriented Ply Fiber Metal Laminate under Concentrated Loading Conditions (집중하중을 받는 일방향 섬유 금속 적층판의 손상 거동)

  • Nam, H.W.;Kim, Y.H.;Jung, S.W.;Jung, C.K.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.407-412
    • /
    • 2001
  • In this research, damage behavior of singly oriented ply (SOP) fiber metal laminate (FML) subject to concentrated load was studied. The static indentation tests were conducted to study fiber orientation effect on damage behavior of FML. During the static indentation tests, Acoustic Emission technique (AE) was adopted to study damage characteristics of FML. AE signals were obtained by using AE sensor with 150kHz resonance frequency and the signals were compared with indentation curves of FML. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. Cumulative AE counts were well predicted crack initiation and crack propagation and AE amplitude were useful for prediction of damage failure mode. During the matrix cracking, fiber debonding and fiber breakage, AE amplitude has $45{\sim}60dB,\;60{\sim}80dB\;and\;90{\sim}100dB$, respectively.

  • PDF

A Study of Hair Damage depending on Hair Treatment Conditions and Morphological Change in Hair (트리트먼트 처리조건에 따른 모발 손상 및 형태학적 변화에 관한 연구)

  • Joo, Yeon Bin;Lim, Sun Nye
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.219-227
    • /
    • 2015
  • This study aims to propose a method to reduce hair damage after investigating the following: the factors which vary depending on hair treatment conditions; the degree of hair damage in the bleached sample; and an analysis of the effects of a perm on wave formation. To determine the effects of these treatment types, hair bleach was mixed with the hair treatment, and hair damage and formation of permanent waves were examined. Using a scanning electron microscope, in addition, morphological changes were analyzed and the following results were obtained: After mixing natural powder(2.5g) and hair cream(2.5g) and bleaching the mixture, it was compared to the scale structure of untreated hair. When 5g of natural powder was mixed and bleached, a clear layer was observed among cuticle scales, showing the effects of hair treatment. Therefore, this confirms that the effects of hair treatment were most notable when grain powder was mixed with hair cream. Once hair is damaged, it is almost impossible to regain its original state. When chemical agents are used, therefore, it is important to consider the possible hair damage they cause.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

Corrosion Characteristics of 316L Stainless Steel with Chloride Concentrations in Cathode Operating Conditions of Metallic Bipolar Plate for PEMFC (고분자 전해질 연료전지 금속분리판용 316L 스테인리스강의 양극작동조건에서 염화물 농도에 따른 부식 특성)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.435-450
    • /
    • 2021
  • The interest in eco-friendly energy is increasing, and polymer electrolyte membrane fuel cell (PEMFC) is attracting attention as alternative power sources. Research on metallic bipolar plates, a fuel cell component, is being actively conducted. However, since the operating conditions of PEMFC, in which sulfuric acid (H2SO4) and hydrofluoric acid (HF) are mixed, are strong acidity, the durability of the metallic bipolar plate is very important. In this research, the electrochemical characteristics and corrosion damage behavior of 316L stainless steel, a material for metallic bipolar plates, were analyzed through potentiostatic corrosion tests with test times and chloride concentrations. As the test times and chloride concentrations increased, the current density and corrosion damage increased. As a result of observation with scanning electron microscope(SEM) and 3D microscope, both the depth and width of pitting corrosion increased with increases in test times and chloride concentrations. In particular, the pitting corrosion damage depth at test conditions of 6 hours and 1000 ppm chloride increased the most. The growth of the pitting corrosion damage was not directly proportional to time and increased significantly after a certain period.

An approach for optimal sensor placement based on principal component analysis and sensitivity analysis under uncertainty conditions

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.59-80
    • /
    • 2022
  • In the present study, the objective is to detect the structural damages using the responses obtained from the sensors at the optimal location under uncertainty conditions. Reducing the error rate in damage detection process due to responses' noise is an important goal in this study. In the proposed algorithm for optimal sensor placement, the noise of responses recorded from the sensors is initially reduced using the principal component analysis. Afterward, the optimal sensor placement is obtained by the damage detection equation based sensitivity analysis. The sensors are placed on degrees of freedom corresponding to the minimum error rate in structural damage detection through this procedure. The efficiency of the proposed method is studied on a truss bridge, a space dome, a double-layer grid as well as a three-story experimental frame structure and the results are compared. Moreover, the performance of the suggested method is compared with three other algorithms of Average Driving Point Residue (ADPR), Effective Independence (EI) method, and a mass weighting version of EI. In the examples, young's modulus, density, and cross-sectional areas of the elements are considered as uncertainty parameters. Ultimately, the results have demonstrated that the presented algorithm under uncertainty conditions represents a high accuracy to obtain the optimal sensor placement in the structures.

Damage Monitoring of Concrete With Acoustic Emission Method for Nuclear Waste Storage: Effect of Temperature and Water Immersion

  • Park, June-Ho;Kwon, Tae-Hyuk;Han, Gyeol;Kim, Jin-Seop;Hong, Chang-Ho;Lee, Hang-Lo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.297-306
    • /
    • 2022
  • The acoustic emission (AE) is proposed as a feasible method for the real-time monitoring of the structural damage evolution in concrete materials that are typically used in the storage of nuclear wastes. However, the characteristics of AE signals emitted from concrete structures subjected to various environmental conditions are poorly identified. Therefore, this study examines the AE characteristics of the concrete structures during uniaxial compression, where the storage temperature and immersion conditions of the concrete specimens varied from 15℃ to 75℃ and from completely dry to water-immersion, respectively. Compared with the dry specimens, the water-immersed specimens exhibited significantly reduced uniaxial compressive strengths by approximately 26%, total AE energy by approximately 90%, and max RA value by approximately 70%. As the treatment temperature increased, the strength and AE parameters, such as AE count, AE energy, and RA value, of the dry specimens increased; however, the temperature effect was only minimal for the immersed specimens. This study suggests that the AE technique can capture the mechanical damage evolution of concrete materials, but their AE characteristics can vary with respect to the storage conditions.