• 제목/요약/키워드: damage behavior

검색결과 1,898건 처리시간 0.026초

Trends in Mobile Ransomware and Incident Response from a Digital Forensics Perspective

  • Min-Hyuck, Ko;Pyo-Gil, Hong;Dohyun, Kim
    • Journal of information and communication convergence engineering
    • /
    • 제20권4호
    • /
    • pp.280-287
    • /
    • 2022
  • Recently, the number of mobile ransomware types has increased. Moreover, the number of cases of damage caused by mobile ransomware is increasing. Representative damage cases include encrypting files on the victim's smart device or making them unusable, causing financial losses to the victim. This study classifies ransomware apps by analyzing several representative ransomware apps to identify trends in the malicious behavior of ransomware. We present a technique for recovering from the damage, from a digital forensic perspective, using reverse engineering ransomware apps to analyze vulnerabilities in malicious functions applied with various cryptographic technologies. Our study found that ransomware applications are largely divided into three types: locker, crypto, and hybrid. In addition, we presented a method for recovering the damage caused by each type of ransomware app using an actual case. This study is expected to help minimize the damage caused by ransomware apps and respond to new ransomware apps.

알루미늄 합금 A7075-T6의 프레팅 피로에서 접촉압력의 영향 (Contact Pressure Effect on Fretting Fatigue of Aluminum Alloy A7075-T6)

  • 조성산;황동현
    • 한국정밀공학회지
    • /
    • 제29권5호
    • /
    • pp.531-537
    • /
    • 2012
  • Fretting fatigue tests were conducted to investigate the effect of contact pressure on fretting fatigue behavior in aluminum alloy A7075-T6. Test results showed that when the contact pressure is so low that gross or partial slip occurs at the pad/specimen interface, fretting fatigue damage increases with the contact pressure. However, when the contact pressure is high enough to prevent slip at the interface, fretting fatigue damage decreases with the contact pressure. In order to understand how the contact pressure influence the fretting fatigue damage, finite element analyses were conducted and the analysis results were used to evaluate critical plane fretting fatigue damage parameters and their components. It is revealed that fretting fatigue damage estimated with the parameters exhibits the same variation as that in the tests. Moreover, the variation of fretting fatigue damage is closely related with that of the maximum normal stress on the critical plane rather than the strain amplitude on the critical plane.

터널굴착에 타른 인접건물의 거동평가에 대한 모형실험연구 (Model tests for the behavior assessment of adjacent buildings in urban tunnelling)

  • 황의석;김학문
    • 한국터널지하공간학회 논문집
    • /
    • 제9권3호
    • /
    • pp.251-261
    • /
    • 2007
  • 본 연구는 터널굴착 공사에 의한 지반거동을 평가하여, 구조물의 형상, 위치, 굴착공정 변화등의 다양한 조건과 지반/구조물의 상호작용이 고려된 모형실험을 기본으로 수행하였다. 굴착진행 단계에 따른 구조물의 손상 거동 평가시 인접 구조물이 밀집된 도심지 굴착에서는 보다 안전하고 보수적인 평가가 나타나는 각변위와 수평변형율에 의한 손상도표를 활용하는 것이 보다 안전할 것으로 판단된다. 모형실험시 구조물에 발생된 균열의 손상수준을 손상도표에서 평가해 본 결과, 균열손상 수준이 적용된 평가가 각변위와 수평변형율만 적용된 손상수준보다 안전측으로 평가되는 것을 확인할 수 있었다. 그러므로, 각변위와 수평변형율 뿐만 아니라 균열이 고려된 손상평가를 수행하는 것이 보다 바람직할 것으로 판단된다.

  • PDF

Novel approach for early damage detection on rotor blades of wind energy converters

  • Zerbst, Stephan;Tsiapoki, Stavroula;Rolfes, Raimund
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.419-444
    • /
    • 2014
  • Within this paper a new approach for early damage detection in rotor blades of wind energy converters is presented, which is shown to have a more sensitive reaction to damage than eigenfrequency-based methods. The new approach is based on the extension of Gasch's proportionality method, according to which maximum oscillation velocity and maximum stress are proportional by a factor, which describes the dynamic behavior of the structure. A change in the proportionality factor can be used as damage indicator. In addition, a novel deflection sensor was developed, which was specifically designed for use in wind turbine rotor blades. This deflection sensor was used during the experimental tests conducted for the measurement of the blade deflection. The method was applied on numerical models for different damage cases and damage extents. Additionally, the method and the sensing concept were applied on a real 50.8 m blade during a fatigue test in the edgewise direction. During the test, a damage of 1.5 m length was induced on the upper trailing edge bondline. Both the initial damage and the increase of its length were successfully detected by the decrease of the proportionality factor. This decrease coincided significantly with the decrease of the factor calculated from the numerical analyses.

Vibration based damage identification of concrete arch dams by finite element model updating

  • Turker, Temel;Bayraktar, Alemdar;Sevim, Baris
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.209-220
    • /
    • 2014
  • Vibration based damage detection is very popular in the civil engineering area. Especially, special structures like dams, long-span bridges and high-rise buildings, need continues monitoring in terms of mechanical properties of material, static and dynamic behavior. It has been stated in the International Commission on Large Dams that more than half of the large concrete dams were constructed more than 50 years ago and the old dams have subjected to repeating loads such as earthquake, overflow, blast, etc.,. So, some unexpected failures may occur and catastrophic damages may be taken place because of theloss of strength, stiffness and other physical properties of concrete. Therefore, these dams need repairs provided with global damage evaluation in order to preserve structural integrity. The paper aims to show the effectiveness of the model updating method for global damage detection on a laboratory arch dam model. Ambient vibration test is used in order to determine the experimental dynamic characteristics. The initial finite element model is updated according to the experimentally determined natural frequencies and mode shapes. The web thickness is selected as updating parameter in the damage evaluation. It is observed from the study that the damage case is revealed with high accuracy and a good match is attained between the estimated and the real damage cases by model updating method.

Characteristic Behavior of High-Strength Concrete Columns under Simulated Seismic Loading

  • Hwang, Sun-Kyoung
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권2E호
    • /
    • pp.79-87
    • /
    • 2006
  • The main objective of this research is to examine the behavior of high-strength concrete(HSC) columns. Eight test columns in one-third scale were tested under the conditions of cyclic lateral force and a constant axial load equal to 30% of the column axial load capacity. The $200{\times}200mm$ square columns were reinforced with eight DB bars constituting a longitudinal steel ratio of 2.54% of the column cross-sectional area. The main experimental parameters were volumetric ratio of transverse reinforcement(${\rho}_s$=1.58, 2.25 percent), tie configuration(Type H, Type C, Type D) and tie yield strength($f_{yh}$=548.8 and 779.1 MPa). It was found that the hysteretic behaviour and ultimate deformability of HSC columns were influenced by the amount and details of transverse reinforcement in the potential plastic hinge regions. Columns of transverse reinforcement in the amount 42 percent higher than that required by seismic provisions of ACI 318-02 showed ductile behavior. At 30% of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 548.8 MPa. Correlations between the calculated damage index and the damage progress are proposed.

Influence of openings of infill wall on seismic vulnerability of existing RC structures

  • Dilmac, Hakan
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.211-227
    • /
    • 2020
  • The contribution of infill wall is generally not considered in the structural analysis of reinforced concrete (RC) structures due to the lack of knowledge of the complex behavior of the infilled frame of RC structures. However, one of the significant factors affecting structural behavior and earthquake performance of RC structures is the infill wall. Considering structural and architectural features of RC structures, any infill wall may have openings with different amounts and aspect ratios. In the present study, the influence of infill walls with different opening rates on the structural behaviors and earthquake performance of existing RC structures were evaluated. Therefore, the change in the opening ratio in the infill wall has been investigated for monitoring the change in structural behavior and performance of the RC structures. The earthquake performance levels of existing RC structures with different structural properties were determined by detecting the damage levels of load-carrying components. The results of the analyzes indicate that the infill wall can completely change the distribution of column and beam damage level. It was observed that the openings in the walls had serious impact on the parameters affecting the behavior and earthquake performance of the RC structures. The infill walls have a beneficial effect on the earthquake performance of RC structures, provided they are placed regularly and there are appropriate openings rate throughout the RC structures and they do not cause structural irregularities.

벼의 충격(衝擊) 특성(特性)에 관한 연구(硏究) (Measurements of Mechanical Behavior of Rough Rice under Impact Loading)

  • 차재윤;고학균;노상하;김만수;김용현
    • Journal of Biosystems Engineering
    • /
    • 제14권3호
    • /
    • pp.207-214
    • /
    • 1989
  • In this study, impact force and angular displacement of the pendulum were measured by the load cell and potentiometer. Mechanical behavior of rough rice under impact loading was able to analyze precisely and efficiently, because measured data were accumulated and handled by the automatic data acquisition system making use of microcomputer system. Impact force and angular displacement were measured with a resolutiln of 1/1500 seconds in time. Mechanical behavior such as force and energy at rupture point of Japonica type and Indica type rough rice were measured with this system. After impact loading, the damage of rough rice was examined with the microphotograph and an allowable impact force was measured. The results obtained in this study are summarized as follows. 1. Machanical behavior of rough rice under impact loading was analyzed precisely and efficiently because measured data were accumulated and handled by this data acquisition system. 2. Rupture force and rupture energy of rough rice were appeared to be the lowest value in the range of 16 to 18 % moisture content, and rupture force and rupture energy of Japonica type were higher than those of Indica type in each level of moisture content. 3. From the result of the damage examined after the impact loading, allowable impact force was the lowest in the range of 16 to 18 % moisture content, and the value of the allowable impact force of Japonica type was higher than that of Indica type in each level of moisture content.

  • PDF

Interface monitoring of steel-concrete-steel sandwich structures using piezoelectric transducers

  • Yan, Jiachuan;Zhou, Wensong;Zhang, Xin;Lin, Youzhu
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1132-1141
    • /
    • 2019
  • Steel-concrete-steel (SCS) sandwich structures have important advantages over conventional concrete structures, however, bond-slip between the steel plate and concrete may lead to a loss of composite action, resulting in a reduction of stiffness and fatigue life of SCS sandwich structures. Due to the inaccessibility and invisibility of the interface, the interfacial performance monitoring and debonding detection using traditional measurement methods, such as relative displacement between the steel plate and core concrete, have proved challenging. In this work, two methods using piezoelectric transducers are proposed to detect the bond-slip between steel plate and core concrete during the test of the beam. The first one is acoustic emission (AE) method, which can detect the dynamic process of bond-slip. AE signals can be detected when initial micro cracks form and indicate the damage severity, types and locations. The second is electromechanical impedance (EMI) method, which can be used to evaluate the damage due to bond-slip through comparing with the reference data in static state, even if the bond-slip is invisible and suspends. In this work, the experiment is implemented to demonstrate the bond-slip monitoring using above methods. Experimental results and further analysis show the validity and unique advantage of the proposed methods.