• Title/Summary/Keyword: damage Identification

Search Result 724, Processing Time 0.028 seconds

Identification of Ozone-induced Skin Damage and Screening of Antioxidant for Ozone (오존에 의한 피부손상 확인 및 이를 방어하는 피부 외용제 소재의 탐색)

  • 최신욱;김창수;정재형;김남경;한상화
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.39-51
    • /
    • 2004
  • Ozone(O$_3$), one of best-known toxic air pollutant, act as a strong oxidant. It is possible that skins exposed to the air can be easily damaged by such oxidative air pollutants. Therefore, in the present study, anti-oxidative effects of natural product. on $O_2$ㆍ and ㆍOH were investigated by EPR. Ozone caused protein damage and lipid oxidation, in HaCaT and B16F10 leading ultimately to programmed cell death. It also reduced the level of antioxidant molecules including ascorbic acid and tocopherol in stratum comeum. However, antioxidants originated from natural products could protect skin from these products could protect skin from these oxidative damages. We concluded that eight natural extracts including Rosa davurica, Ligularia sibrica, Green tea acted as strong antioxidants against ozone.

A Study for Structural Damage Identification Method Using Genetic Algorithm (유전자 알고리즘을 이용한 구조물 손상 탐색기법에 관한 연구)

  • Woo, Ho-Kil;Choi, Byoung-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.80-87
    • /
    • 2007
  • In this paper, a method for identifying the location and extent of a damage in a structure using residual forces was presented. Element stiffness matrix reduction parameters in a finite element model were used to describe the damaged structure mathematically. The element stiffness matrix reduction parameters were determined by minimizing a global error derived from dynamic residual vectors, which were obtained by introducing a simulated experimental data into the eigenvalue problem. Genetic algorithm was used to get the solution set of element stiffness reduction parameters. The proposed scheme was verified using Euler-Bernoulli beam. The results were presented in the form of tables and charts.

Damage Assessment of a Post-Tensioned Segmental Concrete Bridge Using Modal Testing Data (모달시험을 통한 Post-Tensioned Segmental 콘크리트 교량의 손상평가)

  • Heo, Gwanghee;Choi, Man-Yong;Wang, M.L.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.205-214
    • /
    • 1999
  • 구조물의 동특성(고유진동수, 감쇠, 모드형상 등)의 변화는 구조물의 안전도를 평가할 수 있는 한 방법이다. 본 연구에서 콘크리트 세그먼트의 웨브 부분에 상당히 많은 균열이 진전되고 있는 상태의 Post-Tensioned Segmental 콘크리트 교량의 안전도 평가를 시도하였다. 안전도 평가를 위한 근간 데이터로 1986년 측정했던 데이터와 2차원 유한요소해석에서 얻은 결과값을 사용했다. 손상의 정도와 손상의 위치를 보다 정확히 찾아내기 위한 기술 중의 한 방법으로 Modal Test를 이용하였다. 이 방법이 Post-Tensioned Segmental 콘크리트 교량에 적용되어 교량의 안전도를 분석 평가하였다.

  • PDF

Two-step approaches for effective bridge health monitoring

  • Lee, Jong Jae;Yun, Chung Bang
    • Structural Engineering and Mechanics
    • /
    • v.23 no.1
    • /
    • pp.75-95
    • /
    • 2006
  • Two-step identification approaches for effective bridge health monitoring are proposed to alleviate the issues associated with many unknown parameters faced in real structures and to improve the accuracy in the estimate results. It is suitable for on-line monitoring scheme, since the damage assessment is not always needed to be carried out whereas the alarming for damages is to be continuously monitored. In the first step for screening potentially damaged members, a damage indicator method based on modal strain energy, probabilistic neural networks and the conventional neural networks using grouping technique are utilized and then the conventional neural networks technique is utilized for damage assessment on the screened members in the second step. The effectiveness of the proposed methods is investigated through a field test on the northern-most span of the old Hannam Grand Bridge over the Han River in Seoul, Korea.

Simultaneous identification of stiffness and damping based on derivatives of eigen-parameters

  • Lia, H.;Liu, J.K.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.687-702
    • /
    • 2015
  • A method based on derivatives of eigen-parameters is presented for damage detection in discrete systems with dampers. The damage is simulated by decrease on the stiffness coefficient and increase of the damping coefficient. In the forward analysis, the derivatives of eigen-parameters are derived for the discrete system. In the inverse analysis, a derivative of eigen-parameters based model updating approach is used to identify damages in frequency domain. Two numerical examples are investigated to illustrate efficiency and accuracy of the proposed method. Studies in this paper indicate that the proposed method is efficient and robust for both single and multiple damages and is insensitive to measurement noise. And satisfactory identified results can be obtained from few numbers of iterations.

Important Parameters Related With Fault for Site Investigation of HLW Geological Disposal

  • Jin, Kwangmin;Kihm, You Hong;Seo, Dong-Ik;Kim, Young-Seog
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.533-546
    • /
    • 2021
  • Large earthquakes with (MW > ~ 6) result in ground shaking, surface ruptures, and permanent deformation with displacement. The earthquakes would damage important facilities and infrastructure such as large industrial establishments, nuclear power plants, and waste disposal sites. In particular, earthquake ruptures associated with large earthquakes can affect geological and engineered barriers such as deep geological repositories that are used for storing hazardous radioactive wastes. Earthquake-driven faults and surface ruptures exhibit various fault zone structural characteristics such as direction of earthquake propagation and rupture and asymmetric displacement patterns. Therefore, estimating the respect distances and hazardous areas has been challenging. We propose that considering multiple parameters, such as fault types, distribution, scale, activity, linkage patterns, damage zones, and respect distances, enable accurate identification of the sites for deep geological repositories and important facilities. This information would enable earthquake hazard assessment and lower earthquake-resulted hazards in potential earthquake-prone areas.

A Study on Performance Improvements about Duct of Smoke Control System Combined with Air-Conditioning Equipment (공기조화설비 겸용 제연설비 덕트의 성능개선을 위한 연구)

  • Oh, Teakhum;Park, Chanseok
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.67-72
    • /
    • 2021
  • To ensure the safety and functionality of a railroad bridge, maintaining the integrity of the bridge via continuous structural health monitoring is important. However, most structural integrity monitoring methods proposed to date are based on modal responses which require the extracting process and have limited availability. In this paper, the applicability of the existing damage identification method based on free-vibration reponses to time-domain deflection shapes due to moving train load is investigated. Since the proposed method directly utilizes the time-domain responses of the structure due to the moving vehicles, the extracting process for modal responses can be avoided, and the applicability of structural health evaluation can be enhanced. The feasibility of the presented method is verified via a numerical example of a simple plate girder bridge.

Identification of prestress-loss in PSC beams using modal information

  • Kim, Jeong-Tae;Yun, Chung-Bang;Ryu, Yeon-Sun;Cho, Hyun-Man
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.467-482
    • /
    • 2004
  • One of the uncertain damage parameters to jeopardize the safety of existing PSC bridges is the loss of the prestress force. A substantial prestress-loss can lead to severe problems in the serviceability and safety of the PSC bridges. In this paper, a nondestructive method to detect prestress-loss in beam-type PSC bridges using a few natural frequencies is presented. An analytical model is formulated to estimate changes in natural frequencies of the PSC bridges under various prestress forces. Also, an inverse-solution algorithm is proposed to detect the prestress-loss by measuring the changes in natural frequencies. The feasibility of the proposed approach is evaluated using PSC beams for which a few natural frequencies were experimentally measured for a set of prestress-loss cases. Numerical models of two-span continuous PSC beams are also examined to verify that the proposed algorithm works on more complicated cases.

Health monitoring of multistoreyed shear building using parametric state space modeling

  • Medhi, Manab;Dutta, Anjan;Deb, S.K.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.47-66
    • /
    • 2008
  • The present work utilizes system identification technique for health monitoring of shear building, wherein Parametric State Space modeling has been adopted. The method requires input excitation to the structure and also output acceleration responses of both undamaged and damaged structure obtained from numerically simulated model. Modal parameters like eigen frequencies and eigen vectors have been extracted from the State Space model after introducing appropriate transformation. Least square technique has been utilized for the evaluation of the stiffness matrix after having obtained the modal matrix for the entire structure. Highly accurate values of stiffness of the structure could be evaluated corresponding to both the undamaged as well as damaged state of a structure, while considering noise in the simulated output response analogous to real time scenario. The damaged floor could also be located very conveniently and accurately by this adopted strategy. This method of damage detection can be applied in case of output acceleration responses recorded by sensors from the actual structure. Further, in case of even limited availability of sensors along the height of a multi-storeyed building, the methodology could yield very accurate information related to structural stiffness.

A review of recent research advances on structural health monitoring in Western Australia

  • Li, Jun;Hao, Hong
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.33-49
    • /
    • 2016
  • Structural Health Monitoring (SHM) has been attracting numerous research efforts around the world because it targets at monitoring structural conditions and performance to prevent catastrophic failure, and to provide quantitative data for engineers and infrastructure owners to design a reliable and economical asset management strategy. In the past decade, with supports from Australian Research Council (ARC), Cooperative Research Center for Infrastructure and Engineering Asset Management (CIEAM), CSIRO and industry partners, intensive research works have been conducted in the School of Civil, Environmental and Mining Engineering, University of Western Australia and Centre for Infrastructural Monitoring and Protection, Curtin University on various techniques of SHM. The researches include the development of hardware, software and various algorithms, such as various signal processing techniques for operational modal analysis, modal analysis toolbox, non-model based methods for assessing the shear connection in composite bridges and identifying the free spanning and supports conditions of pipelines, vibration based structural damage identification and model updating approaches considering uncertainty and noise effects, structural identification under moving loads, guided wave propagation technique for detecting debonding damage, and relative displacement sensors for SHM in composite and steel truss bridges. This paper aims at summarizing and reviewing the recent research advances on SHM of civil infrastructure in Western Australia.