• Title/Summary/Keyword: dam storage

Search Result 244, Processing Time 0.031 seconds

Empirical recommendation for planning the observation density of water level in a reservoir (Case study on Hwacheon Dam in Korea) (저수지 수위 관측밀도 제안: 화천댐 중심으로)

  • Hwang-Bo, Jong Gu;Hong, Jun Hyuk
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.835-841
    • /
    • 2022
  • The water level of the dam reservoir is an important data in the operation of the dam. reservoir storage can be calculated by using water levels or prepared for disasters such as drought and floods. However, the water level is measured near the dam, making it difficult to represent a reservoir with a large area, and there is a high possibility that the water surface will be distorted due to discharge. Furthermore, the results of the survey showed that the water level of the reservoir is irregular rather than constant, and the water level of the reservoir is repeatedly falling and rising by section. In order to calculate such a complex and irregular representative water level, the water level observation density of the reservoir must be increased. In this study, we tried to derive the optimum water level observation density for Hwacheon Dam. A reasonable water level measurement density was derived by investigating the water level elevation of the reservoir and statistically analyzing it. The observation density may vary depending on the size of the reservoir, so the same analysis was conducted on the Goesan Dam and Boseonggang Dam. According to the results, four Hwacheon dams, three Goesan dams, and seven Boseong River dams are needed for observation density.

Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image (고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발)

  • Yoon, Sunkwon;Lee, Seongkyu;Park, Kyungwon;Jang, Sangmin;Rhee, Jinyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1041-1053
    • /
    • 2018
  • In this study, a real-time storage level and capacity monitoring and forecasting system for Yongdam Dam watershed was developed using high resolution satellite image. The drought indices such as Standardized Precipitation Index (SPI) from satellite data were used for storage level monitoring in case of drought. Moreover, to predict storage volume we used a statistical method based on Principle Component Analysis (PCA) of Singular Spectrum Analysis (SSA). According to this study, correlation coefficient between storage level and SPI (3) was highly calculated with CC=0.78, and the monitoring and predictability of storage level was diagnosed using the drought index calculated from satellite data. As a result of analysis of principal component analysis by SSA, correlation between SPI (3) and each Reconstructed Components (RCs) data were highly correlated with CC=0.87 to 0.99. And also, the correlations of RC data with Normalized Water Surface Level (N-W.S.L.) were confirmed that has highly correlated with CC=0.83 to 0.97. In terms of high resolution satellite image we developed a water detection algorithm by applying an exponential method to monitor the change of storage level by using Multi-Spectral Instrument (MSI) sensor of Sentinel-2 satellite. The materials of satellite image for water surface area detection in Yongdam dam watershed was considered from 2016 to 2018, respectively. Based on this, we proposed the possibility of real-time drought monitoring system using high resolution water surface area detection by Sentinel-2 satellite image. The results of this study can be applied to estimate of the reservoir volume calculated from various satellite observations, which can be used for monitoring and estimating hydrological droughts in an unmeasured area.

Reduction of Rainfall Runoff by Constructing Underground Storage Tank (지하저류조 신설에 따른 우수 유출량 저감)

  • Song, Chang Geun;Seo, Il Won;Jung, Young Jai
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.927-935
    • /
    • 2013
  • In this study, reservoir routings for 1 hour-50 year precipitation frequency were carried out at the Engineering Water Fall and the Amphitheater located at the downstream of Seoul National University Dam. Main analysis was focus on the following matters: (1) storage amount by the tank; (2) reduction of the outflow and the peak water surface elevation; (3) change of phase lag time; and (4) design of new boxes at the inlet and outlet of storage tank. As for the storage tank of $25,000m^3$ built in the Amphitheater area, the tank induced 49.43 % storage effect, 28 min. phase lag time, and reduced the peak outflow by 49.64 %. In addition, the peak water surface elevation was lowered by 35 cm compared with that of $15,000m^3$ storage tank. It is concluded that combined management of previous storage facility and new underground storage tank would control the excessive rainfall runoff efficiently.

Security of Upland Irrigation Water through the Effective Storage Management of Irrigation Dams (관개용 댐의 효율적 저수관리를 통한 밭 관개 용수 확보)

  • Lee Joo-Yong;Kim Sun-Joo;Kim Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.13-23
    • /
    • 2006
  • In Korea, upland irrigation generally depends on the ground water or natural rainfall since irrigation water supplied from dams is mainly used for paddy irrigation, and only limited amount of irrigation water is supplied to the upland area. For the stable security of upland irrigation water, storage level of irrigation dams was simulated by the periods. A year was divided into 4 periods considering the irrigation characteristics. Through the periodical management of storage level, water utilization efficiency in irrigation dams could be enhanced and it makes available to secure extra available water from existing dams without new development of water resources. Two study areas, Seongju and Donghwa dam, were selected for this study. Runoff from the watersheds was simulated by the modified tank model and the irrigation water to upland crops was calculated by the Penman-Monteith method. The analyzed results showed that relatively sufficient extra available water could be secured for the main upland crops in Seongju area. In case of Donghwa area, water supply to non-irrigated upland was possible in normal years but extra water was necessary in drought years such as 1998 and 2001.

Prediction of sediment flow to Pleikrong reservoir due to the impact of climate change

  • Xuan Khanh Do;ThuNgaLe;ThuHienNguyen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.38-38
    • /
    • 2023
  • Pleikrong reservoir with a concrete gravity dam that impound more than 1 billion cubic meter storage volume is one of the largest reservoir in Central Highland of Vietnam. Sedimentation is a major problem in this area and it becomes more severe due to the effect of climate change. Over time, it gradually reduces the reservoir storage capacity affecting to the reliability of water and power supply. This study aims to integrate the soil and water assessment tool (SWAT) model with 14 bias-corrected GCM/RCM models under two emissions scenarios, representative concentration pathway (RCP) 4.5 and 8.5 to estimate sediment inflow to Pleikrong reservoir in the long term period. The result indicated that the simulated total amount of sediment deposited in the reservoir from 2010 to 2018 was approximately 39 mil m3 which is a 17% underestimate compared with the observed value of 47 mil m3. The results also show the reduction in reservoir storage capacity due to sedimentation ranges from 25% to 62% by 2050, depending on the different climate change models. The reservoir reduced storage volume's rate in considering the impact of climate change is much faster than in the case of no climate change. The outcomes of this study will be helpful for a sustainable and climate-resilient plan of sediment management for the Pleikrongreservoir.

  • PDF

Spatial Extension of Runoff Data in the Applications of a Lumped Concept Model (집중형 수문모형을 활용한 홍수유출자료 공간적 확장성 분석)

  • Kim, Nam Won;Jung, Yong;Lee, Jeong Eun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.9
    • /
    • pp.921-932
    • /
    • 2013
  • Runoff data availability is a substantial factor for precise flood control such as flood frequency or flood forecasting. However, runoff depths and/or peak discharges for small watersheds are rarely measured which are necessary components for hydrological analysis. To compensate for this discrepancy, a lumped concept such as a Storage Function Method (SFM) was applied for the partitioned Choongju Dam Watershed in Korea. This area was divided into 22 small watersheds for measuring the capability of spatial extension of runoff data. The chosen total number of flood events for searching parameters of SFM was 21 from 1991 to 2009. The parameters for 22 small watersheds consist of physical property based (storage coefficient: k, storage exponent: p, lag time: $T_l$) and flood event based parameters (primary runoff ratio: $f_1$, saturated rainfall: $R_{sa}$). Saturated rainfall and base flow from event based parameters were explored with respect to inflow at Choongju Dam while other parameters for each small watershed were fixed. When inflow of Choongju Dam was optimized, Youngchoon and Panwoon stations obtained average of Nash-Sutcliffe Efficiency (NSE) were 0.67 and 0.52, respectively, which are in the satisfaction condition (NSE > 0.5) for model evaluation. This result is showing the possibility of spatial data extension using a lumped concept model.

Grid Based Rainfall-Runoff Modeling Using Storage Function Method (저류함수기법을 이용한 격자기반의 강우-유출 모형 개발)

  • Shin, Cheol-Kyun;Cho, Hyo-Seob;Jung, Kwan-Sue;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.969-978
    • /
    • 2004
  • According to the report of hydrologic modeling study, from a quantitative point of view, a lumped model is more efficient than a distributed model. A distributed model has to simplify geospatial characteristics for the shake of restricted application on computer calculation and field observation. In this reason, a distributed model can not help having some errors of water quantity modelling. However, considering a distribution of rainfall-runoff reflected spatial characteristics, a distributed model is more efficient to simulate a flow of surface water, The purpose of this study is modeling of spatial rainfall-runoff of surface water using grid based distributed model, which is consisted of storage function model and essential basin-channel parameters( slope, flow direction & accumulation), and that procedure is able to be executed at a personal computer. The prototype of this model is developed in Heongseong Multipunose Dam basin and adapted in Hapchon Multipurpose Dam basin, which is larger than the former about five times. The efficiency coefficients in result of two dam basin simulations are more than about 0.9, but ones at the upstream water level gauge station meet with bad result owing to overestimated rating curves in high water level. As a result of this study, it is easily implemented that spatially distributed rainfall-runoff model using GIS, and geophysical characteristics of the catchment, hereafter it is anticipated that this model is easily able to apply rainfall data by real time.

Analysis of Morphological Characteristics of Farm Dams in Korea (한국 농업용 저수지의 형태학적 특성 분석)

  • Yoo, Chul-Sang;Park, Hyun-Keun
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.6
    • /
    • pp.940-954
    • /
    • 2007
  • This study was to analyze a total of 18,068 farm reservoirs in Korea with their basic measures, and estimate their average characteristics. These characteristics have also been compared with those of foreign countries. Histograms of seven measures(approval area, beneficial area, watershed area, effective storage, full water area, dam length, and dam height) of reservoirs are made to characterize their distributions and to apply the Pareto analysis with the power law to evaluate their inequalities. The histogram analysis shows that the measures of dam(channel cross-section) characteristics follow the log-normal distributions, on the other hand, those of the basin characteristics the exponential-type distributions. Pareto analysis was done for the five measures of having exponential distribution. The Pareto exponents estimated are 0.38 for the approval area, 0.42 for the beneficial area, -0.19 for the effective storage, 0.30 for the watershed area, and 0.22 for the full water area, so the inequality of the beneficial area is the highest and that of the effective storage is the lowest. Analysis of morphology index versus watershed area shows that most reservoirs are categorized into deep or normal ones. These characteristics are also found to be similar to those of foreign countries.

Prospect of future water resources in the basins of Chungju Dam and Soyang-gang Dam using a physics-based distributed hydrological model and a deep-learning-based LSTM model (물리기반 분포형 수문 모형과 딥러닝 기반 LSTM 모형을 활용한 충주댐 및 소양강댐 유역의 미래 수자원 전망)

  • Kim, Yongchan;Kim, Youngran;Hwang, Seonghwan;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1115-1124
    • /
    • 2022
  • The impact of climate change on water resources was evaluated for Chungju Dam and Soyang-gang Dam basins by constructing an integrated modeling framework consisting of a dam inflow prediction model based on the Variable Infiltration Capacity (VIC) model, a distributed hydrologic model, and an LSTM based dam outflow prediction model. Considering the uncertainty of future climate data, four models of CMIP6 GCM were used as input data of VIC model for future period (2021-2100). As a result of applying future climate data, the average inflow for period increased as the future progressed, and the inflow in the far future (2070-2100) increased by up to 22% compared to that of the observation period (1986-2020). The minimum value of dam discharge lasting 4~50 days was significantly lower than the observed value. This indicates that droughts may occur over a longer period than observed in the past, meaning that citizens of Seoul metropolitan areas may experience severe water shortages due to future droughts. In addition, compared to the near and middle futures, the change in water storage has occurred rapidly in the far future, suggesting that the difficulties of water resource management may increase.

An Evaluation of Stress-Strain Behaviour of Earth-Rockfill Dam and Causes of Crack due to Water Table Fluctuation (수위변동에 따른 Earth-Rockfill 댐의 거동 및 균열원인에 대한 평가)

  • 김상규;한성길;이민형;안상로
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.149-162
    • /
    • 2001
  • Longitudinal cracks have occurred on the crest of dams soon after their construction of two earth-rocfill dams located in Samlangjin. They are a pair of pumped storage dams constructed for generation of electrical power. The upper dam and lower dam are subjected to the variation of water level more than 10m once in a day alteratively. This paper deals with the finding of possible causes for longitudinal cracks about upper dam. The dominant cause was considered to be due to fluctuation of water load, for which numerical analysis was carried out using the hyperbolic model. In order to obtain parameters necessary to the analysis, a series of triaxial tests was performed for both core and rock material. Also dynamic triaxial test was performed to obtain dynamic properties of soils, which could be used as input data to simulate frequent variation of stress change due to the water fluctuation. It was known from the numerical analysis that the confining pressure of upper 4m from the top of the crest become negative after repeating of water load, meaning that tension cracks occurred in the top portion of the crest. The depth of longitudinal cracks has been investigated by digging test pit on the crest. This results agree with the field observation.

  • PDF