• 제목/요약/키워드: daily streamflow

검색결과 137건 처리시간 0.031초

수계별 주요 유량 지점에 대한 강수량과 기저유출 기여도 분석 (Analysis of Baseflow Contribution to Streamflow at Several Flow Stations)

  • 최윤호;박윤식;류지철;이동준;김용석;최중대;임경재
    • 한국물환경학회지
    • /
    • 제30권4호
    • /
    • pp.441-451
    • /
    • 2014
  • Streamflow is typically divided into two components that are direct runoff and baseflow, it is required to analyze and estimate behaviors of those two flow components to understand watershed characteristics so that watershed management plan can be effective in pollutant reductions. Since pollutant load behaviors in a stream or river are variable by flow component behaviors, best management practices need to be applied in a watershed based on the pollutant load behaviors varying with flow components. Thus, baseflow behaviors were analyzed separating baseflow from streamflow data collected from fifteen streamflow gaging stations in the 4 major river watersheds which are the Han river, Nakdong river, Guem river, and Yeongsan Somjin river watersheds. Moreover, precipitation trends throughout the 4 River Systems were investigated, thus daily precipitation data were collected from sixty-five locations. The Hank river watershed displayed the largest precipitation (925.2 mm) in summer but the lowest precipitation (71.8 mm) in winter, indicating the watershed has the most fluctuating precipitation characteristic. While the precipitation trends in the Four River Systems varied, a distinct feature in baseflow trends was not found, moreover baseflow percentages to streamflow were typically greater than 50% in the Four River Systems. As shown in this study, it would be expected significant amount of pollutants could be contributed to the stream in the form of baseflow at the watershed.

Enhancing streamflow prediction skill of WRF-Hydro-CROCUS with DDS calibration over the mountainous basin.

  • Mehboob, Muhammad Shafqat;Lee, Jaehyeong;Kim, Yeonjoo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.137-137
    • /
    • 2021
  • In this study we aimed to enhance streamflow prediction skill of a land-surface hydrological model, WRF-Hydro, over one of the snow dominated catchments lies in Himalayan mountainous range, Astore. To assess the response of the Himalayan river flows to climate change is complex due to multiple contributors: precipitation, snow, and glacier melt. WRF-Hydro model with default glacier module lacks generating streamflow in summer period but recently developed WRF-Hydro-CROCUS model overcomes this issue by melting snow/ice from the glaciers. We showed that by implementing WRF-Hydro-CROCUS model over Astore the results were significantly improved in comparison to WRF-Hydro with default glacier module. To constraint the model with the observed streamflow we chose 17 sensitive parameters of WRF-Hydro, which include groundwater parameters, surface runoff parameters, channel parameters, soil parameters, vegetation parameters and snowmelt parameters. We used Dynamically Dimensioned Search (DDS) method to calibrate the daily streamflow with the Nash-Sutcliffe efficiency (NSE) being greater than 0.7 both in calibration (2009-2010) and validation (2011-2013) period. Based on the number of iterations per parameter, we found that the parameters related to channel and runoff process are most sensitive to streamflow. The attempts to address the responses of the streamflows to climate change are still very weak and vague especially northwest Himalayan Part of Pakistan and this study is one of a few successful applications of process-based land-surface hydrologic model over this mountainous region of UIB that can be utilized to have an in-depth understanding of hydrological responses of climate change.

  • PDF

A System for Estimating Daily Paddy Irrigation Water Requirements in Simulating Daily Streamflow

  • Noh Jae Kyoung
    • 한국농공학회논문집
    • /
    • 제46권7호
    • /
    • pp.71-80
    • /
    • 2004
  • A system for estimating daily paddy irrigation water requirements was developed to simulate daily stream flows that reflect various upstream and downstream return flows from river basin. Evapotranspiration in paddy fields was estimated using the modified Penman equation. Daily irrigation water requirements of paddy fields were calculated by multiplying the paddy area and the daily decrease in ponding depth. The system was constructed almost completely using images, grids, etc. in Visual Basic 6.0. The developed model was verified in the Damyang dam, and was used to estimate daily paddy irrigation water requirements at 12 small watersheds in Geum river basin for 20 years, from 1983 to 2002, covering paddy field areas of $3,332\~26,422$ ha. The results on the runoff analysis on the inflow to the Daecheong multi-purpose dam with various return flows were satisfactory. They were reasonable compared to the scenario where return flows were not considered.

일 강우량의 모의 발생을 통한 갈수유량 계열의 산정 및 빈도분석 (Low Flow Frequency Analysis of Steamflows Simulated from the Stochastically Generated Daily Rainfal Series)

  • 김병식;강경석;서병하
    • 한국수자원학회논문집
    • /
    • 제32권3호
    • /
    • pp.265-279
    • /
    • 1999
  • 본 연구에서는, Markov 연쇄 모형에 의해 산정된 모의 일 강우량을 일 유출모형인 Tand 모형에 입력시켜 모의 일유출량을 산정함으로써 저수유량계열을 확장하는 방법을 개발하였다. 또한, 모의된 일 유량계열로부터 지속기간별 연 최저치 계열을 작성하였으며, 지속기간별 연 최저치계열에 대한 빈도분석을 시행하였다. 분석에 사용된 분포형은 Lognormal-2, Lognormal-3, Gamma-2, Gamma-3, LogGamma-3, Gumbel-2, Weibull-2 분포이었으며, 모수추정은 모멘트법과 최우도법을 사용하였다. Kolmogorov - Sminorv 검정방법으로 지속기간별 연 최저치 계열에 적합한 확률분포형을 결정하고, 용담댐 지점을 대상으로 하여 지속기간별 갈수 빈도곡선을 산정하였다. 본 연구에서 제안된 방법을 적용하면 과거 저수 유량계열의 통계적 특성을 잘 나타내는 일 유량의 모의가 가능 하여, 갈수유량계열 자료가 빈곤한 유역에서 확률 갈수량을 추정하는데 유용하리라고 판단된다.

  • PDF

농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I) (Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I))

  • 권순국
    • 한국농공학회지
    • /
    • 제22권4호
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

LSTM을 이용한 Piney River유역의 최대강우시 유량예측 (LSTM Prediction of Streamflow during Peak Rainfall of Piney River)

  • ;성연정;정영훈
    • 한국방재안전학회논문집
    • /
    • 제14권4호
    • /
    • pp.17-27
    • /
    • 2021
  • 유량예측은 효과적인 홍수관리 및 수자원 계획을 위한 매우 중요한 재난방지 접근법이다. 현재 기후변화로 인한 집중호우가 나날이 증가하고 있어 막대한 기반시설 손실과 재산, 인명 피해가 발생하고 있다. 본 연구는 미국 테네시주 Hickman County의 Vernon에 있는 Piney Resort의 최근 홍수사례분석을 통해 최대 강우 시나리오에서 유량예측에 대한 강우의 기여도를 측정했다. Piney River 유역내 USGS 두개의 관측소(03602500, 03599500)에서 20년(2000-2019) 동안의 일별 하천 유량, 수위 및 강우 데이터를 수집했고, Long Short Term Memory(LSTM)을 사용하였다. 또한, Tensorflow, Keras Machine learning frameworks, Python을 이용하여 14일로 구별된 유량 값을 예측하였다. 또한, 모델이 2021년 8월 21일의 범람 이벤트를 예측할 수 있었는지를 결정하는 데 사용되었다. 전체 데이터(수위, 유량 및 강우량)가 포함된 LSTM 모델은 일부 강우 모델을 제외하고 지속성 모델보다 우수한 성능을 보였으며, 강우자료만 이용하여 유량예측을 하는 것은 충분하지 않음을 나타냈다. 결과는 LSTM 모델은 0.68 및 13.84m3/s의 최적 NSE 및 RMSE 값을 나타냈고, 가장 낮은 예측 오차로 예측 최대유량은 94m3/s로 나타났다. 향후 강우 패턴에 대한 다양한 분석이 이루어진다면 효율적인 홍수 경보 시스템 및 정책을 설계하는 관련 연구에 도움을 줄 것으로 판단된다.

도시 하천유지유량 공급의 저수지 운영 방법 (Operation rule curve for supplying urban instream flow from reservoir)

  • 노재경;이재남
    • 농업과학연구
    • /
    • 제38권1호
    • /
    • pp.163-172
    • /
    • 2011
  • To provide the operation rule curve for suppling instream flow to urban stream from reservoir, the Soho reservoir with watershed area of 7.4 $km^2$ and total water storage of 2.58 $Mm^3$ was planned at the headwaters of the Daejeoncheon. Daily streamflow was simulated and using the simulated streamflow and desired instream flow, the operation rule curve by Senga method was drawn and evaluated through reservoir operation. Senga method is derived by accumulating the differences between streamflow and desired instream flow adversely. Water storages were simulated on a daily basis to supply urban instream flow from Soho reservoir, but the amount of supplying instream flow to urban stream was not nearly increased comparing with that of normal operation that does not used the rule curve. Thereafter the new simulation-based operation rule curve was derived and applied to supply instream flow from Soho reservoir. In normal operation, the amount of instream flow was shown to 15,000 $m^3$/d, but it was increased to 27,700 $m^3$/d in withdrawal limited operation using the new derived rule curve, in which the applicability of this rule curve was proved. Also comparing with the flow duration curves at station just before urban Daejeoncheon stream without and with upstream Soho reservoir, the 95th flow was decreased from 1.64 mm/d to 1.51 mm/d, and the 355th flow was increased from 0.17 mm/d to 0.30 mm/d. Monthly streamflows during October to March were increased from 10.6~24.1 mm to 24.1~34.0 mm with the increasing rate of 141~227%.

대청댐유역의 기저유출분리를 통한 기저유량 산정에 관한 연구 (A Study on the Estimation of Base Flow Using Base Flow Separation in the Daichung Dam Basin)

  • 김경수;조기태
    • 대한지하수환경학회지
    • /
    • 제7권1호
    • /
    • pp.15-19
    • /
    • 2000
  • 본 연구는 하천유량 수문곡선의 분리를 통한 기저유량 산정에 관한 것이다. 수문곡선을 분리하기 위하여 Institute of Hydrology(1980)에서 제안한 표준방법(Standard Method)을 이용하였다. 이를 위하여 대상유역의 유역특성치와 기저유출관계를 이용하여 모형의 매개변수를 산정하였으며, 그 결과를 토대로 수문곡선을 분리하여 기저유량을 산정 하였다. 기저유량 산정결과 기저 유출율은 20.0%∼39.4%로 나타났으며, 유역면적이 비교적 큰 유역에서는 기저 유출율이 다소 높게 나타났고, 상대적으로 유역면적이 적은 지역에서는 기저 유출율이 적게 나타났다. 그리고 연 강우량과 기저 유출율의 관계를 분석한 결과 연강우량과 기저 유출율의 상관성은 거의 나타나지 않았다.

  • PDF

유역물수지모형(WWASS)에 의한 임의 하천지점에서 일별 유출량의 모의발생 (Daily Runoff Simulation at River Network by the WWASS(Watershed Water balance And Streamflow Simulation) Model)

  • 김현영;황철상;강석만;이광양
    • 한국수자원학회논문집
    • /
    • 제31권4호
    • /
    • pp.503-512
    • /
    • 1998
  • 여러 소하천으로 이루어지는 수계에서 복잡한 물수지 요소가 여러 지점에서 발생하는 하천 말단 특히 감조지역에 수자원 시설물을 설치하고자 할 때 유입량의 추정이 문제가 되며 물수지 요소의 변동에 따라 말단의 유출량이 영향을 받는다. 이러한 문제는 하천의 유입.유출요소의 정형화를 필요로하며 소유역의 일유출량 추정 모형을 필요로 한다. WWASS 모형은 일별 유입량과 펼요수량 추정 모형으로써 DIROM을 사용하고 있고 물수지 요소들을 하천의 조절점(control point)을 중심으로 처리하도록 되어있다. WWASS 모형을 새만금지구 유역에서 보정 과 검정을 거친 후 만경강과 동진강 하구지점에 적용한 결과 바람직한 결과를 얻을 수 있었다.

  • PDF

장기 가뭄기간의 유출량을 고려한 SWAT 보정 매개변수 추정 연구 (A Study on Parameter Estimation for SWAT Calibration Considering Streamflow of Long-term Drought Periods)

  • 김다래;김성준
    • 한국농공학회논문집
    • /
    • 제59권2호
    • /
    • pp.19-27
    • /
    • 2017
  • Recently, the hydrological model Soil Water Assessment Tool (SWAT) has been applied in many watersheds in South Korea. This study estimated parameters in SWAT for calibrating streamflow in long-term drought periods. Therefore, we focused on the continuous severe drought periods 2014~2015, and understand the model calibrated parameters. The SWAT was applied to a $366.5km^2$ Gongdo watershed by using 14 years (2002~2015) daily observed streamflow (Q) including two years extreme drought period of 2014~2015. The 9 parameters of CN2, CANMX, ESCO, SOL_K, SLSOIL, LAT_TIME, GW_DELAY, GWQMN, ALPHA_BF were selected for model calibration. The SWAT result by focusing on 5 normal years (2002~2006) calibration showed the 14 years average Nash-Sutcliffe model efficiency (NSE) for Q and 1/Q with 0.78 and 0.58 respectively. On the other hand, the 14 years average NSEs of Q and 1/Q by focusing on 2 drought years (2014~2015) calibration were 0.86 and 0.76 respectively. Thus, we could infer that the SWAT calibration trial by focusing on drought periods data can be a good approach to calibrate both high flow and low flow by controlling the 9 drought affected parameters.