• Title/Summary/Keyword: daily solar radiation

Search Result 232, Processing Time 0.032 seconds

Characteristic analysis of solar radiation and atmospheric transmissivity at Chupungryeong (추풍령의 일사량과 대기투과율의 특성 분석)

  • Park, Jin Ki;Kim, Bong Seop;Park, Jong Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.2
    • /
    • pp.149-155
    • /
    • 2014
  • The surface solar radiation is an important indicators for climate and agricultural research over the Earth system. For the climate and agricultural research, long-term meteorological data and accurate measured data are needed. The daily solar radiation from Jan. 2001 to Dec. 2010 have been employed in this study analyze atmospheric transmissivity for Chupungryeong. The corresponding daily value of atmospheric transmissivity is calculated for Chupungryeong meteorological data. In this paper, relationship analysis of daily solar radiation and atmospheric transmissivity is presented. It shows that atmospheric transmissivity over late December peaked in the 2000s, substantially decreased from the early-January, and changed little after that in summer. Reduction of solar radiation caused a reduction of more than 0.3 in atmospheric transmissivity during July to August. It was concluded that the atmospheric transmissivity could be very useful for evaluating solar radiation. Atmospheric transmissivity approach is suitable for daily-term simulation studies and useful for computing solar radiation.

Evaluation of Typical Solar Radiation Data by the TRY Methodology (TRY 방법론에 의한 표준일사량데이터 평가)

  • Yoo, Ho-Chun;Lee, Gwan-Ho;Kim, Kyoung-Ryul;Park, So-Hee
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.23-28
    • /
    • 2007
  • Limited fossil fuels and unstable energy supply are considered as one of the critical problems in architecture requiring large amounts of energy. In order to this challenge, environment-friendly architecture design is required. Clear data should be prepared to apply solar energy to architecture aggressively and properly. This study used FS statistical analysis data regarding average daily solar radiation of Seoul observed over 20 years to find out standard year and standard daily solar radiation. This study also aims to compare and evaluate an appropriate method of selecting a standard year which is too close to measurement value through comparison and analysis with daily solar radiation acquired by applying overseas researchers' suggesting weight factor. As a result, the data nearest to measurement value of daily solar radiation was UK CIBSE TRY(TYPE 2) displaying 0.100in t-statistic index. For UK CIBSE TRY(TYPE 2), weight factor was applied to three climatic elements except relative humidity. TYPE 1 and TYPE 3 recorded 0.343 and 0.367, respectively, showing higher record of t-statistic than TYPE 2. TYPE 1 was calculated through FS statistical value of single data about daily solar radiation with other climatic elements excluded. For TYPE 3, relative humidity was added to TYPE 2. In particular, since TYPE 2 was closer to the measurement value compared to the others, it is necessary to consider relationship with other climate elements if other climate elements are added.

Analysis of Relationship Between Meteorological Parameters and Solar Radiation at Cheongju (청주지역의 기상요소와 일사량과의 상관관계 분석)

  • Baek, Shin Chul;Shin, Hyoung Sub;Park, Jong Hwa
    • KCID journal
    • /
    • v.19 no.1
    • /
    • pp.87-96
    • /
    • 2012
  • Information of local solar radiation is essential for many field, including water resources management, crop yield estimation, crop growth model, solar energy systems and irrigation and drainage design. Unfortunately, solar radiation measurements are not easily available due to the cost and maintenance and calibration requirements of the measuring equipment and station. Therefore, it is important to elaborate methods to estimate the solar radiation based on readily available meteorological data. In this study, two empirical equations are employed to estimate daily solar radiation using Cheongju Regional Meteorological Office data. Two scenarios are considered: (a) sunshine duration data are available for a given location, or (b) only daily cloudiness index records exist. Simple linear regression with daily sunshine duration and cloudiness index as the dependent variable accounted for 91% and 80%, respectively of the variation of solar radiation(H) at 2011. Daily global solar radiation is highly correlated with sunshine duration. In order to indicate the performance of the models, the statistical test methods of the mean bias error(MBE), root mean square error(RMSE) and correlation coefficient(r) are used. Sunshine duration and cloudiness index can be easily and reliably measured and data are widely available.

  • PDF

Prediction of Daily Solar Irradiation Based on Chaos Theory (혼돈이론을 이용한 일적산 일사량의 예측)

  • Cho, S. I.;Bae, Y. M.;Yun, J. I.;Park, E. W.;Hwang, H.
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.123-130
    • /
    • 2000
  • A forcasting scheme for daily solar irradiance on agricultural field sis proposed by application of chaos theory to a long term observation data. It was conducted by reconstruction of phase space, attractor analysis, and Lyapunov analysis. Using the methodology , it was determined whether evolution of the five climatic data such as daily air temperature , water temperature , relative humidity, solar radiation, and wind speed are chaotic or not. The climatic data were collected for three years by an automated weather station at Hwasung-gun, Kyonggi-province. The results showed that the evolution of solar radiation was chaotic , and could be predicted. The prediction of the evolution of the solar radiation data was executed by using ' local optimal linear reconstruction ' algorithm . The RMS value of the predicting for the solar radiation evolution was 4.32 MJ/$m^2$ day. Therefore, it was feasible to predict the daily solar radiation based on the chaos theory.

  • PDF

Performance of Angstrom-Prescott Coefficients under Different Time Scales in Estimating Daily Solar Radiation in South Korea (시간규모가 다른 Angstrom-Prescott 계수가 남한의 일별 일사량 추정에 미치는 영향)

  • Choi, Mi-Hee;Yun, Jin-I.;Chung, U-Ran;Moon, Kyung-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.232-237
    • /
    • 2010
  • While global solar radiation is an essential input variable in crop models, the observation stations are relatively sparse compared with other meteorological elements. Instead of using measured solar radiation, the Angstrom-Prescott model estimates have been widely used. Monthly data for solar radiation and sunshine duration are a convenient basis for deriving Angstrom-Prescott coefficients (a, b), but it is uncertain whether daily solar radiation could be estimated with a sufficient accuracy by the monthly data - derived coefficients. We derived the Angstrom-Prescott coefficients from the 25 years observed global solar radiation and sunshine duration data at 18 locations across South Korea. In order to figure out any improvements in estimating daily solar radiation by replacing monthly data with daily data, the coefficients (a, b) for each month were derived separately from daily data and monthly data. Local coefficients for eight validation sites were extracted from the spatially interpolated maps of the coefficients and used to estimate daily solar radiation from September 2008 to August 2009 when, pyranometers were operated at the same sites for validation purpose. Comparison with the measured radiation showed a better performance of the daily data - derived coefficients in estimating daily global solar radiation than the monthly data - derived coefficients, showing 9.3% decrease in the root mean square error (RMSE).

Calculation of Evapotranspiration Based on Daily Temperature (일단위 온도에 기초한 증발산량의 산정)

  • Oh, Nam-Sun;Lee, Khil-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.479-485
    • /
    • 2004
  • This study presents the calculation of evapotranspiration using estimated daily incoming solar radiation based on maximum daily temperature and minimum daily temperature. The Thornton and Running method(1999) was used to estimate daily incoming solar radiation and then the resulting solar radiation was compared with the measurements. It showed that the estimated daily solar radiation was within reasonable accuracy. In turn, the estimated daily solar radiation was applied to calculate the daily evapotranspiration using the Priestly-Taylor equation and Penman equation and the general results were that evapotranspiration was overestimated in the Priestly-Taylor equation but that Penman was a good estimator with this approach. It is encouraging that it is possible to use this approach, because the required historical data for its estimation are not extensively available and it is not easy to access the meteorological stations in most areas. The calculated eyapotranspiration was compared with that of Hargreaves which was based on daily temperature, and gives us some intuition in terms of engineering.

Correlation analysis of solar radiation and meteorological parameters on high ozone concentration (태양복사 및 기상요소의 고농도 오존형성에 대한 상관성 분석)

  • An, Jae Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.93-98
    • /
    • 2012
  • The concerns on high ozone concentration phenomenon is significantly growing in Seoul metropolitan area including the industry complex area, like Shiwha Banwol area. The aims of this research is the analysis of relationship between high concentrations of $O_3$ and solar radiation parameters in atmosphere. The understanding of the effects of solar radiation intensity, humidity, high air temperature on ozone concentration in a day is very useful to provide a direction for reducing of the high ozone concentration to a local government or a metropolitan government. The correlation analysis between maximum ozone concentration and various meteorological parameters in 2009 - 2011 carried out using IBM's SPSS program. The results showed that the mean correlations coefficient (R) between daily Ozone maximum and solar radiation resulted R = 0.64 during 2011. May - September in 10 air pollution stations. In case of correlations between daily ozone maximum and relative humidity showed negative correlation R = -0.61. The correlation analysis with mean air temperature during 1-3 PM resulted R = 0.29. This low correlation coefficient could be corrected by using of categorized data of ozone concentration. The daily maximum ozone concentration is more dependent on peak solar radiation and high air temperature during 1-3 PM than its simple daily maximum values. The results of this research would be used to develop the high ozone alert system around Seoul metropolitan area. This correlation analysis could be partially integrated to prediction of ozone peak concentration in connection with other methods like classification and regression tree(CART).

Computation of daily solar radiation using adaptive neuro-fuzzy inference system in Illinois

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.479-482
    • /
    • 2015
  • The objective of this study is to develop adaptive neuro-fuzzy inference system (ANFIS) model for estimating daily solar radiation using limited weather variables at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using ANFIS model. From the performance evaluation and scatter diagrams of ANFIS model, ANFIS 3 (three input) model produces the best results for both stations. Results obtained indicate that ANFIS model can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. These results testify the generation capability of ANFIS model and its ability to produce accurate estimates in Illinois.

  • PDF

adaptive neuro-fuzzy inference system;daily solar radiation;Illinois;limited weather variables;

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.483-486
    • /
    • 2015
  • The objective of this study is to develop generalized regression neural networks (GRNN) model for estimating daily solar radiation using limited weather variables at Champaign and Springfield stations in Illinois. The best input combinations (one, two, and three inputs) can be identified using GRNN model. From the performance evaluation and scatter diagrams of GRNN model, GRNN 3 (three input) model produces the best results for both stations. Results obtained indicate that GRNN model can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois. These results testify the generation capability of GRNN model and its ability to produce accurate estimates in Illinois.

  • PDF

Analysis of Solar Radiation Components for the Installation of Solar Thermal System in Korea (국내 태양열시스템 설치를 위한 성분일사량 분석)

  • Jo, Dok-Ki;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.12-18
    • /
    • 2009
  • The Knowledge of the solar radiation components are essential for modeling many solar energy systems. This is particularly the case for applications that concentrate the incident energy to attain high thermodynamic efficiency achievable only at the higher temperatures. In order to estimate the performance of concentrating thermal systems, it is necessary to know the intensity of the beam radiation, as only this component can be concentrated. The Korea Institute of Energy Research(KIER) has began collecting solar radiation component data since January, 2002. KIER's component data will be extensively used by concentrating system users or designers as well as by research institutes. The theoretical analysis of solar radiation as a component has compared with the experimental data obtained by the KIER station. The Result of simulation analysis shows that the annual-average daily diffuse radiation on the horizontal surface is $1,457cal/m^2$ and daily direct radiation on the horizontal surface is $1,632cal/m^2$ for all over the 16 areas in Korea.