• Title/Summary/Keyword: daily maximum temperature

Search Result 406, Processing Time 0.026 seconds

The Effect of Air Pollution on Allergic Diseases Considering Meteorological Factors in Metropolitan Cities in Korea (서울 및 6대 광역시의 기상요인을 고려한 대기오염이 주요 알레르기질환에 미치는 영향)

  • Kim, Hyo-Mi;Heo, Jin-A;Park, Yoon-Hyung;Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.3
    • /
    • pp.184-194
    • /
    • 2012
  • Objectives: We investigated the effects of air pollution on allergic diseases (allergic rhinitis, asthma, atopic dermatitis) in metropolitan cities in Korea, adjusting for meteorological factors. Methods: Data on daily hospital visits and hospital admissions for 2003-2010 was obtained from the National Health Insurance Cooperation. Meteorological data was obtained from the Korea Meteorological Administration. We then calculated daily mean temperature, daily mean humidity, daily mean air pressure at sea level, and diurnal temperature range. We used data on air pollution provided by the National Institute of Environmental Research. Maximum daily eight-hour average ozone concentrations and the daily mean $PM_{10}$ were used. We estimated excess risk and 95% confidence interval for the increasing interquatile range (IQR) of each air pollutant using Generalized Additive Models (GAM) that appropriate for time series analysis. Results: In this study, we observed an association between ozone and hospital visits for allergic rhinitis, asthma, and atopic dermatitis in all metropolitan cities, adjusting for temperature, humidity, air pressure at sea level, diurnal temperature range, and day of the week. Ozone was associated with hospital visits for allergic rhinitis, asthma, and atopic dermatitis across all metropolitan cities. However $PM_{10}$ was associated with allergic-related diseases in only select cities. Also, ozone and $PM_{10}$ were associated with hospital admission for asthma in all cities except Gwangju. Hospitalization for the other diseases failed to show consistent association with air pollutants. Conclusion: In the findings of this study, there was a significant association between air pollutants and allergic-related diseases. More detailed research subdivided age group or conducting meta-analyses combining data of all cities is required.

Selection of Early and Late Flowering Robinia pseudoacacia from Domesticated and Introduced Cultivars in Korea and Prediction of Flowering Period by Accumulated Temperature

  • Lee, Kyung Joon;Sohn, Jae Hyung;Redei, K.;Yun, Hye Young
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.170-177
    • /
    • 2007
  • The objectives of this study were to select early, late, and abundant flowering trees of black locust from domesticated and introduced cultivars, and prediction of flowering period by calculation of accumulated temperature in spring. Four cultivars (Debreceni-2, Pusztavacs, Jaszkiseri, and Rozsaszin AC) from Hungary and a cultivar from Beijing, China, were introduced, propagated by seed and planted in a seed orchard. For domesticated black locust, 63 cultivars from 10 locations throughout the country were selected and propagated by root cutting. Criteria for selection of domesticated cultivars were abundant flowering, long flowering period, or abundant nectar production with, if possible, straight stems. Accumulated temperature was calculated from data of a nearby weather station by accumulating daily maximum temperature minus 5 degree Celsius from January 1 up to the date reaching 880 degrees. Daily mean temperature was also used to calculate accumulated temperature up to the date reaching 450 degrees. The percentages of two-year and three-year-old flowering trees propagated by root cutting were higher than that of trees propagated by seeds, while four-year-old trees all flowered regardless of propagation methods. Among the domesticated cultivars, all the cultivars from Ganghwa showed abundant flowering with highest nectar production of 6.5 ul per flower, which was 100% more than other domesticated cultivars and 50% more than Debreceni-2 cultivar with highest nectar production among the introduced cultivars from Hungary. At the end of the eight years of observations, two trees of Debreceni-2 cultivars and a tree from Beijing, China were selected for early flowering trees which flowered 2 to 3 days earlier than average trees, while a tree of Debeceni-2 and three trees from Bejing were selected for late flowering trees which flowered 2 to 3 days later than average trees. It is possible to extend the flowering period of black locust by 4 to 6 days by planting early and late flowering cultivars together. Abundant flowering trees were unable to be selected due to severe damages by leaf gall midges which killed many trees and reduced the crown size of the remaining trees in the seed orchard, and which were first found in Korea in 2001 and now damaging most of the black locust forests in Korea. The prediction of flowering period by accumulated temperature indicated that black locust flowered to a peak when accumulated daily maximum temperature reached 880 degrees Celsius, and when daily mean temperature reached 450 degrees.

Meteorological Characteristics of High-Ozone Episode Days in Daegu, Korea (대구시의 고농도 오존 발생 일에 나타나는 기상학적 특성)

  • Son, Im-Young;Kim, Hee-Jong;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.23 no.5
    • /
    • pp.424-435
    • /
    • 2002
  • This study analyzes the surface ozone and meteorological data in Daegu for a period from 1997 to 1999. It also investigates the meteorological characteristics of high ozone episodes. For this study the high ozone episode has been defined as a daily maximum ozone concentration higher than 100ppb in at least one station among six air quality monitoring stations in Daegu, Korea. The frequency of episodes is 13 days. The frequency is the highest in May and September. The average value of daily maximum ozone concentration is 81.6ppb, and 8-hour average ozone concentration is 58.6ppb for the high episodes. This shows that ozone pollution is continuous and wide-ranging in Daegu. The daily maximum ozone concentration is positively correlated to solar radiation and daily maximum temperature, but negatively correlated to relative humidity, wind speed and cloud amount. The maximal correlation coefficient to solar radiation is 0.45. The differences between high ozone episode day's daily mean meteorological value and monthly mean value are +1.58hPa for sea level pressure, +3.45${\circ}$C for maximum temperature, -5.69% for relative humidity, -0.46ms$^{-1}$ for wind speed, -1.79 for cloud amount, and +3.97MJm$^{-2}$ for solar radiation, respectively. This shows that strong solar radiation, low wind speed and no precipitation between 0700${\sim}$1100LST are favorite conditions for high ozone episodes. It is related to the morning stagnant condition.

Synoptic Air Mass Classification Using Cluster Analysis and Relation to Daily Mortality in Seoul, South Korea (클러스터 분석을 통한 종관기단분류 및 서울에서의 일 사망률과의 관련성 연구)

  • Kim, Jiyoung;Lee, Dae-Geun;Choi, Byoung-Cheol;Park, Il-Soo
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.45-53
    • /
    • 2007
  • In order to investigate the impacts of heat wave on human health, cluster analysis of meteorological elements (e.g., temperature, dewpoint, sea level pressure, visibility, cloud amount, and wind components) for identifying offensive synoptic air masses is employed. Meteorological data at Seoul during the past 30 years are used. The daily death data at Seoul are also employed. Occurrence frequency of heat waves which is defined by daily maximum temperature greater than the threshold temperature (i.e., $31.2^{\circ}C$) was analyzed. The result shows that the frequency and duration of heat waves at Seoul are increasing during the past 30 years. In addition, the increasing trend of the frequency and duration clearly appears in late spring and early autumn as well as summer. Factor analysis shows that 65.1% of the total variance can be explained by 4 components which are linearly independent. Eight clusters (or synoptic air masses) were classified and found to be optimal for representing the summertime air masses at Seoul, Korea. The results exhibit that cluster-mean values of meteorological variables of an offensive air mass (or cluster) are closely correlated with the observed and standardized deaths.

Are Spring and Fall in South Korea Getting Shorter? (한국의 봄-가을은 짧아지고 있는가?)

  • Kim, Dong Hyun;Shin, Hayong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.546-553
    • /
    • 2013
  • A clear increase in the average annual temperature is observed worldwide, and climate changes take place in response to that increase. This affects not only the ecosystem, but also to mankind. Of all those aspects of climate change, people are especially interested in the length of each season, and people acknowledge that the duration of spring and fall has been shortened over the past several years. Still, it is difficult to observe this kind of phenomenon with the simple analysis of dividing the seasons and calculating the duration. Therefore, this study attempted to set up a more intuitive standard which well reflects the current situation. This study also divided the daily climate into 4 states using the daily maximum and minimum temperature. Moreover, using the Hidden Markov Model, this study calculated the duration of each season and analyzed its tendency based on the daily temperature data of the last 53 years (1960~2012). According to the result, the duration of spring and fall showed mild decreasing tendency over the past 53 years, and the duration of fall decreased even more during the past 30 years in the Korean peninsula. After 1960, the start of spring was advanced, which decreased the length of winter for about 11 days. On the other hand, the duration of summer increased for about 25 days, which is consistent with the worldwide tendency of temperature increase.

Analyzing Information Value of Temperature Forecast for the Electricity Demand Forecasts (전력 수요 예측 관련 의사결정에 있어서 기온예보의 정보 가치 분석)

  • Han, Chang-Hee;Lee, Joong-Woo;Lee, Ki-Kwang
    • Korean Management Science Review
    • /
    • v.26 no.1
    • /
    • pp.77-91
    • /
    • 2009
  • It is the most important sucess factor for the electricity generation industry to minimize operations cost of surplus electricity generation through accurate demand forecasts. Temperature forecast is a significant input variable, because power demand is mainly linked to the air temperature. This study estimates the information value of the temperature forecast by analyzing the relationship between electricity load and daily air temperature in Korea. Firstly, several characteristics was analyzed by using a population-weighted temperature index, which was transformed from the daily data of the maximum, minimum and mean temperature for the year of 2005 to 2007. A neural network-based load forecaster was derived on the basis of the temperature index. The neural network then was used to evaluate the performance of load forecasts for various types of temperature forecasts (i.e., persistence forecast and perfect forecast) as well as the actual forecast provided by KMA(Korea Meteorological Administration). Finally, the result of the sensitivity analysis indicates that a $0.1^{\circ}C$ improvement in forecast accuracy is worth about $11 million per year.

Variations of Soil Temperatures in Winter and Spring at a High Elevation Area (Boulder, Colorado)

  • Lee, Jin-Yong;Lim, Hyoun Soo;Yoon, Ho Il;Kim, Poongsung
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.16-25
    • /
    • 2015
  • The City of Boulder is located at an average elevation of 1,655 m (5,430 feet), the foothills of the Rocky Mountains in Colorado. Its daily air temperature is much varying and snow is very frequent and heavy even in spring. This paper examines characteristics of shallow (surface and depth = 10 cm) soil temperatures measured from January to May 2015 in the high elevation city Boulder, Colorado. The surface soil temperature quickly responded to the air temperature with the strongest periodicity of 1 day while the subsurface soil temperatures showed a less correlation and delayed response with that. The short-time Fourier of the soil temperatures uncovered their very low frequencies characteristics in heavy snow days while it revealed high frequencies of their variations in warm spring season. The daily minimum air temperature exhibited high cross-correlations with the soil temperatures without lags unlike the maximum air temperature, which is derived from its higher and longer auto-correlation and stronger spectrums of low frequencies than the maximum air temperature. The snow depth showed an inverse relationship with the soil temperature variations due to snow's low thermal conductivity and high albedo. Multiple regression for the soil temperatures using the air temperature and snow depth presented its predicting possibility of them even though the multiple r2 of the regression is not that much satisfactory (r2 = 0.35-0.64).

Near Future Projection of Extreme Temperature over CORDEX-East Asia Phase 2 Region Using the WRF Model Based on RCP Scenarios (RCP 시나리오 기반 WRF를 이용한 CORDEX-동아시아 2단계 지역의 가까운 미래 극한기온 변화 전망)

  • Seo, Ga-Yeong;Choi, Yeon-Woo;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.29 no.5
    • /
    • pp.585-597
    • /
    • 2019
  • This study evaluates the performance of Weather Research and Forecasting (WRF) model in simulating temperature over the COordinated Regional climate Downscaling EXperiment-East Asia (CORDEX-EA) Phase 2 domain for the reference period (1981~2005), and assesses the changes in temperature and its extremes in the mid-21st century (2026~2050) under global warming based on Representative Concentration Pathway (RCP) scenarios. MPI-ESM-LR forced by two RCP scenarios (RCP2.6 and RCP8.5) is used as initial and lateral boundary conditions. Overall, WRF can capture the observed features of temperature distribution reflecting local topographic characteristic, despite some disagreement between the observed and simulated patterns. Basically, WRF shows a systematic cold bias in daily mean, minimum and maximum temperature over the entire domain. According to the future projections, summer and winter mean temperatures over East Asia will significantly increase in the mid-21st century. The mean temperature rise is expected to be greater in winter than in summer. In accordance with these results, summer (winter) is projected to begin earlier (later) in the future compared to the historical period. Furthermore, a rise in extreme temperatures shows a tendency to be greater in the future. The averages of daily minimum and maximum temperatures above 90 percentiles are likely to be intensified in the high-latitude, while hot days and hot nights tend to be more frequent in the low-latitude in the mid-21st century. Especially, East Asia would be suffered from strong increases in nocturnal temperature under future global warming.

A Special-day Load Forecasting with the Characteristics of Temperature based on Fuzzy Linear Regression (온도 특성을 고려한 퍼지 선형 회귀 분석 모델 기반 특수일 전력 수요 예측)

  • Yi, Kyoung-Jin;Baek, Young-Sik;Song, Kyung-Bin;Kim, Moon-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.432-434
    • /
    • 2001
  • This paper proposes a special-day load forecasting method with the characteristics of temperature based on fuzzy linear regression. We can obtain a linear regression model from the relation between daily peak load and daily maximum or minimum temperature. Simulation results show that the proposed method can improve an accuracy of a special-day load forecasting.

  • PDF

Frequency Distribution of Annual Maximum Daily Rainfall, Temperature and Pressure at Major Meteorological Stations in South Korea (우리나라 주요측후소의 연최극 일강수량 기온 및 기압의 빈도분포)

  • 최병호
    • Water for future
    • /
    • v.17 no.2
    • /
    • pp.99-106
    • /
    • 1984
  • This paper resents frequency distribution of annual maxima of daily rainfall, temperature and pressure at twelve major meteorological stations in South Korea based on avaliable series of annual maxima. As a first step a traditional way of estimating the probabilities of extremes using Jenkinson's method was used here. The results are presented in the form of graph giving the various recurrence periods of rainfall, temperature and pressure and the frequency distributions obtained are discussed.

  • PDF