• Title/Summary/Keyword: daily maximum temperature

Search Result 406, Processing Time 0.039 seconds

Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature (지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석)

  • Lee, Okjeong;Sim, Ingyeong;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • In this study, the surface air temperature (SAT) and the dew-point temperature (DPT) are applied as the covariance of the location parameter among three parameters of GEV distribution to reflect the non-stationarity of extreme rainfall due to climate change. Busan station is selected as the study site and the monthly maximum daily rainfall depth from May to October is used for analysis. Various models are constructed to select the most appropriate co-variate(SAT and DPT) function for location parameter of GEV distribution, and the model with the smallest AIC(Akaike Information Criterion) is selected as the optimal model. As a result, it is found that the non-stationary GEV distribution with co-variate of exp(DPT) is the best. The selected model is used to analyze the effect of climate change scenarios on extreme rainfall quantile. It is confirmed that the design rainfall depth is highly likely to increase as the future DPT increases.

Characteristics and Synoptic Causes on the Abnormal Heat Occurred at Miryang in 2004 (2004년 밀양의 이상더위의 특징과 종관적 원인)

  • Byun, Hi Ryong;Hwang, Ho Seong;Go, Hye Young
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.187-201
    • /
    • 2006
  • During summer (JJA) of 2004, a record-high temperature in Korea appeared at Miryang ($38.5^{\circ}C$ on July 30). Moreover, Miryang showed the most frequent occurrence (25 days in JJA) of the daily highest temperature among observational sites in Korea. Based on meteorological analysis, it is found that this phenomenon is caused by neither the global warming effect nor the urban climate effect. It is caused by the mesoscale and synoptic and/or global scale atmospheric circulations, as evidenced by several factors described below. Firstly, the hottest areas have normally occurred not at a point but over an area, particularly along an axis connecting Sancheong and Daegu. But in 2004, this axis has moved southward and locates over Namhae-Miryang due to northerlies that were induced by the heating effect related to the low snow-cover on the Tibet Plateau. Secondly, although the maximum temperature was the highest among observational sites in Korea, the daily mean temperature and the number of nights with air temperature over $25^{\circ}C$ were not the highest at Miryang. Thirdly, the downdraft induced by the second circulation of typhoon and abnormal development of the North-Pacific High were found to have exerted an important role.

Characteristics on the Temperature Distribution in Steel Girder Bridge by using Gauge Measurement (계측에 의한 강거더교의 온도분포 특성)

  • Lee, Seong-Haeng;Cheung, Jin-Hwan;Kim, Kyoung-Nam;Hahm, Hyung-Gil;Jung, Kyoung-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.283-294
    • /
    • 2011
  • The variation of temperature in the steel girder bridge by air temperature is measured. A correlation between the daily temperature range, the maximum and minimum temperatures of the day, and the temperature of the bridge are analyzed. With the statistical data from the Korea Meteorological Administration, the temperature correlations analyzed in this study is able to predict temperature variations between the upper flange and the lower flange which calculates the realistic displacement values of a movable support and an expansion joint in design.

Comparison of Temperature Indexes for the Impact Assessment of Heat Stress on Heat-Related Mortality

  • Kim, Young-Min;Kim, So-Yeon;Cheong, Hae-Kwan;Kim, Eun-Hye
    • Environmental Analysis Health and Toxicology
    • /
    • v.26
    • /
    • pp.9.1-9.9
    • /
    • 2011
  • Objectives: In order to evaluate which temperature index is the best predictor for the health impact assessment of heat stress in Korea, several indexes were compared. Methods: We adopted temperature, perceived temperature (PT), and apparent temperature (AT), as a heat stress index, and changes in the risk of death for Seoul and Daegu were estimated with $^1{\circ}C$ increases in those temperature indexes using generalized additive model (GAM) adjusted for the non-temperature related factors: time trends, seasonality, and air pollution. The estimated excess mortality and Akaike's Information Criterion (AIC) due to the increased temperature indexes for the $75^{th}$ percentile in the summers from 2001 to 2008 were compared and analyzed to define the best predictor. Results: For Seoul, all-cause mortality presented the highest percent increase (2.99% [95% CI, 2.43 to 3.54%]) in maximum temperature while AIC showed the lowest value when the all-cause daily death counts were fitted with the maximum PT for the $75^{th}$ percentile of summer. For Daegu, all-cause mortality presented the greatest percent increase (3.52% [95% CI, 2.23 to 4.80%]) in minimum temperature and AIC showed the lowest value in maximum temperature. No lag effect was found in the association between temperature and mortality for Seoul, whereas for Daegu one-day lag effect was noted. Conclusions: There was no one temperature measure that was superior to the others in summer. To adopt an appropriate temperature index, regional meteorological characteristics and the disease status of population should be considered.

Seasonal Trend of Elevation Effect on Daily Air Temperature in Korea (일별 국지기온 결정에 미치는 관측지점 표고영향의 계절변동)

  • 윤진일;최재연;안재훈
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.96-104
    • /
    • 2001
  • Usage of ecosystem models has been extended to landscape scales for understanding the effects of environmental factors on natural and agro-ecosystems and for serving as their management decision tools. Accurate prediction of spatial variation in daily temperature is required for most ecosystem models to be applied to landscape scales. There are relatively few empirical evaluations of landscape-scale temperature prediction techniques in mountainous terrain such as Korean Peninsula. We derived a periodic function of seasonal lapse rate fluctuation from analysis of elevation effects on daily temperatures. Observed daily maximum and minimum temperature data at 63 standard stations in 1999 were regressed to the latitude, longitude, distance from the nearest coastline and altitude of the stations, and the optimum models with $r^2$ of 0.65 and above were selected. Partial regression coefficients for the altitude variable were plotted against day of year, and a numerical formula was determined for simulating the seasonal trend of daily lapse rate, i.e., partial regression coefficients. The formula in conjunction with an inverse distance weighted interpolation scheme was applied to predict daily temperatures at 267 sites, where observation data are available, on randomly selected dates for winter, spring and summer in 2000. The estimation errors were smaller and more consistent than the inverse distance weighting plus mean annual lapse rate scheme. We conclude that this method is simple and accurate enough to be used as an operational temperature interpolation scheme at landscape scale in Korea and should be applicable to elsewhere.

  • PDF

The Effects of Temperature on Heat-related Illness According to the Characteristics of Patients During the Summer of 2012 in the Republic of Korea

  • Na, Wonwoong;Jang, Jae-Yeon;Lee, Kyung Eun;Kim, Hyunyoung;Jun, Byungyool;Kwon, Jun-Wook;Jo, Soo-Nam
    • Journal of Preventive Medicine and Public Health
    • /
    • v.46 no.1
    • /
    • pp.19-27
    • /
    • 2013
  • Objectives: This study was conducted to investigate the relationship between heat-related illnesses developed in the summer of 2012 and temperature. Methods: The study analyzed data generated by a heat wave surveillance system operated by the Korea Centers for Disease Control and Prevention during the summer of 2012. The daily maximum temperature, average temperature, and maximum heat index were compared to identify the most suitable index for this study. A piecewise linear model was used to identify the threshold temperature and the relative risk (RR) above the threshold temperature according to patient characteristics and region. Results: The total number of patients during the 3 months was 975. Of the three temperature indicators, the daily maximum temperature showed the best goodness of fit with the model. The RR of the total patient incidence was 1.691 (1.641 to 1.743) per $1^{\circ}C$ after $31.2^{\circ}C$. The RR above the threshold temperature of women (1.822, 1.716 to 1.934) was greater than that of men (1.643, 1.587 to 1.701). The threshold temperature was the lowest in the age group of 20 to 64 ($30.4^{\circ}C$), and the RR was the highest in the ${\geq}65$ age group (1.863, 1.755 to 1.978). The threshold temperature of the provinces ($30.5^{\circ}C$) was lower than that of the metropolitan cities ($32.2^{\circ}C$). Metropolitan cities at higher latitudes had a greater RR than other cities at lower latitudes. Conclusions: The influences of temperature on heat-related illnesses vary according to gender, age, and region. A surveillance system and public health program should reflect these factors in their implementation.

Estimating Reference Crop Evapotranspiration Using Artificial Neural Network and Temperature-based Climatic Data (인공신경망모형을 이용한 기온기반 기준증발산량 산정)

  • Lee, Sung-Hack;Kim, Maga;Choi, Jin-Yong;Bang, Jehong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.95-105
    • /
    • 2019
  • Evapotranpiration (ET) is one of the important factor in Hydrological cycle and irrigation planning. In this study, temperature-based artificial neural network (ANN) model for daily reference crop ET estimation was developed and compared with reference crop evapotranpiration ($ET_0$) from FAO-56 Penman-Monteith method (FAO-56 PM) and parameter regionalized Hargreaves method. The ANN model was trained and tested for 10 weather stations (5 inland stations and 5 costal stations) and two input climate factors, maximum temperature ($T_{max}$), minimum temperature ($T_{min}$), and extraterrestrial radiation (RA) were used for training and validation of temperature-based ANN model. Monthly reference ET by the ANN model also compared with parameter regionalized Hargreaves method for ANN model applicability evaluation. The ANN model evapotranspiration demonstrated more accordance to FAO-56 PM evapotranspiration than the $ET_0$ from parameter regionalized Hargreaves method(R-Hargreaves). The results of this study proposed that daily reference crop ET estimated by the ANN model could be used in the condition of no sufficient climate data.

Microclimate, Growth and Yield in Wheat under North-South and East-West Row Orientation (이랑방향에 따른 밀 군락의 미기상과 생육 및 수량)

  • Yoon, Seong-Tak;Jerry, Johnson
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.155-159
    • /
    • 2004
  • This experiment was carried out to evaluate the microclimate of wheat canopy, growth and yield characteristics of wheat under north-south and east-west row orientation. The variety used in this experiment was "AG South 2000", which was developed in USA. Solar radiation, air temperature, relative humidity, and soil temperature were monitored by data logger from March to May in 2002, The ratio of light penetration to the bottom from the upper canopy was 36.8% in north-south and 21.4% in east-west row orientation. Temporal march of light penetration to the bottom from March to May decreased as wheat developed canopy structure and decreased a little from May as plant were matured. The highest light penetration to the bottom from upper canopy occurred at 13:00 in both north-south and east-west row orientations, respectively which were 36 times in north-south and 27 times in east-west row orientation, respectively. Daily maximum temperature at the bottom of canopy occurred at 14:00 with 29 times in north-south, while 19 times were obtained at 14:00 and 15:00, respectively in east-west row orientation. Relative humidity at the bottom of the canopy in east-west yow orientation showed higher than that of north-south row orientation. Occurrence of daily maximum soil temperature of north-south showed one hour later compared with east-west yow orientation. 1000 grain weight and test weight of north-south row orientation was higher than those of east-west vow orientation. Correlation coefficient between solar radiation of upper canopy and 1000 grain weight showed r=$0.8132^{*}$, and between air temperature of upper canopy and number of spikes per $\textrm{m}^{2}$ and 1000 grain weight showed significant positive correlation with r=$0.8139^{*}$, and r=$0.8293^{*}$, respectively.

Study on the Establishment of Threshold Criteria for Heat Health Watch Warning System in Korea; Part I : Establishment of Criteria and Verification (고온건강경보시스템 기준 설정에 관한 연구( I ) - 기준 설정 및 검증 -)

  • Park, Jong-Kil;Jung, Woo-Sik;Kim, Eun-Byul
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.767-780
    • /
    • 2009
  • This study investigates the standard, duration period and excess mortality of extreme heat using the standardized daily mortality data from 1991 to 2004, establishing a standard threshold Criteria for Heat Health Watch Warning System in Korea. It ultimately aims to provide the guidance in building up Heat Health Watch Warning System for Korea by suggesting the standard to quantify thermal stress from heat. The standard threshold Criteria for Heat Health Watch Warning System for Seoul metropolitan city takes into account both daily maximum temperature and daily maximum heat index(HI) and consists of four phases; caution, extreme caution, danger, and extreme danger. Extreme caution phase and danger phase are used as the advisory and warning of extreme heat, respectively. Since the nationwide distribution of the frequency of extreme heat day and the excess mortality rate shows little difference across regions, the standard threshold Criteria for Heat Health Watch Warning System for Seoul metropolitan city can be used for other regions.

Analyzing the Performance of a Temperature and Humidity Measuring System of a Smart Greenhouse for Strawberry Cultivation (딸기재배 스마트 온실용 온습도 계측시스템의 성능평가)

  • Jeong, Young Kyun;Lee, Jong Goo;Ahn, Enu Ki;Seo, Jae Seok;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.117-125
    • /
    • 2019
  • This study compared the temperature and humidity measured by an aspirated radiation shield (ARS), the accuracy of which has been recently verified, and those measured by a system developed by the parent company (Company A) to investigate and improve the performance of the developed system. The results are as follows. Overall, the two-plate system had a lower radiation shielding effect than the one-plate system but showed better performance results when excluding the effect of strawberry vegetation on the systems. The overall maximum temperature ranges measured by company A's system and the ARS were $20.5{\sim}53.3^{\circ}C$ and $17.8{\sim}44.1^{\circ}C$, respectively. Thus, the maximum temperature measured by company A's system was $2.7{\sim}9.2^{\circ}C$ higher, and the maximum daily temperature difference was approximately $12.2^{\circ}C$. The overall average temperature measured by company A's system and the ARS was $12.4{\sim}38.6^{\circ}C$ and $11.8{\sim}32.7^{\circ}C$, respectively. Thus, the overall average temperature measured by company A's system was $0.6{\sim}5.9^{\circ}C$ higher, and the maximum daily temperature difference was approximately $6.7^{\circ}C$. The overall minimum temperature ranges measured by company A's system and the ARS were $4.2{\sim}28.6^{\circ}C$ and $2.9{\sim}26.4^{\circ}C$, respectively. Thus, the minimum temperature measured by company A's system was $1.3{\sim}2.2^{\circ}C$ higher, and the minimum daily temperature difference was approximately $2.9^{\circ}C$. In addition, the overall relative humidity ranges measured by company A's system and the ARS were 52.9~93.3% and 55.3~96.5%, respectively. Thus, company A's system showed a 2.4~3.2% lower relative humidity range than the ARS. However, there was a day when the relative humidity measured by company A's system was 18.0% lower than that measured by the ARS at maximum. In conclusion, there were differences in the relative humidity measured by the two company's devices, as in the temperature, although the differences were insignificant.