• 제목/요약/키워드: daily maximum precipitation intensity

Search Result 22, Processing Time 0.226 seconds

A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.137-149
    • /
    • 2015
  • Flood planning needs to recognize trends for extreme precipitation events. Especially, the r-year return level is a common measure for extreme events. In this paper, we present a nonstationary temporal model for precipitation return levels using a hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitation measured in Korea with a generalized extreme value (GEV). The temporal dependence among the return levels is incorporated to the model for GEV model parameters and a linear model with autoregressive error terms. We apply the proposed model to precipitation data collected from various stations in Korea from 1973 to 2011.

Development of Heat Wave Indices for Korean Peninsula

  • Chandrasekara, Sewwandhi S.K.;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.366-366
    • /
    • 2020
  • The drought is one of the extreme natural disasters observed in any climate zone and it is due to the deficiency in moisture. The flash drought is identified recently as a subdivision of drought and it is an extreme event distinguished by sudden onset and rapid intensification of drought conditions with severe impacts. The main cause for the flash drought is coupled situation due to precipitation deficit and high evapotranspiration. Hence, heat waves plays major role in identification of flash drought. Therefore, this study focused on identifying changes in distribution of heat waves for Korean Peninsula. The daily maximum and minimum temperature data were used in this study. The heat wave, heat wave intensity and heat wave intensity index were derived. The results of the study would be an input for the future studies on identification of flash drought in Korean Peninsula.

  • PDF

Spatial and Temporal Characteristics of Summer Extreme Precipitation Events in the Republic of Korea, 2002~2011 (우리나라 여름철 극한강수현상의 시·공간적 특성(2002~2011년))

  • Lee, Seung-Wook;Choi, Gwangyong;Kim, Baek-Jo
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.4
    • /
    • pp.393-408
    • /
    • 2014
  • In this study, the spatio-temporal characteristics of summer extreme precipitation events in the Republic of Korea are examined based on the daily precipitation data observed at approximately 360 sites of both Automatic Weather Station (AWS) and Automated Synoptic Observation System (ASOS) networks by the Korea Meteorological Administration for the recent decade(2002~2011). During the summer Changma period(late June~mid July), both the frequency of extreme precipitation events exceeding 80mm of daily precipitation and their decadal maximum values are greatest at most of weather stations. In contrast, during the Changma pause period (late July~early August), these patterns are observed only in the northern regions of Geyeonggi province and western Kangwon province as such patterns are detected around Mt. Sobaek and Mt. Halla as well as in the southern regions of Geyeonggi province and western Kangwon province during the late Changma period (mid August~early September) due to north-south oscillation of the Changma front. Investigation of their regional patterns confirms that not only migration of the Changma front but also topological components in response to the advection of moistures such as elevation and aspect of major mountain ridges are detrimental to spatio-temporal patterns of extreme precipitation events. These results indicate that each local administration needs differentiated strategies to mitigate the potential damages by extreme precipitation events due to the spatiotemporal heterogeneity of their frequency and intensity during each Changma period.

  • PDF

Analysis of Correlation between Particulate Matter in the Atmosphere and Rainwater Quality During Spring and Summer of 2020 (봄·여름철 대기 중 미세먼지와 빗물 수질 상관성 분석)

  • Park, Hyemin;Kim, Taeyong;Heo, Junyong;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1859-1867
    • /
    • 2021
  • This study investigated seasonal characteristics of the particulate matter (PM) in the atmosphere and rainwater quality in Busan, South Korea, and evaluated the seasonal effect of PM10 concentration in the atmosphere on the rainwater quality using multivariate statistical analysis. The concentration of PM in the atmosphere and meteorological observations(daily precipitation amount and rainfall intensity) are obtained from automatic weather systems (AWS) by the Korea Meteorological Administration (KMA) from March 2020 to August 2020. Rainwater samples (n = 216, 13 rain events) were continuously collected from the beginning of the precipitation using the rainwater collecting device at Pukyong National University. The samples were analyzed for pH, EC (electrical conductivity), water-soluble cations(Na+, Mg2+, K+, Ca2+, and NH4+), and anions(Cl-, NO3-, and SO42-). The concentration of PM10 in the atmosphere was steadily measured before and after the precipitation with a custom-built PM sensor node. The measured data were analyzed using principal component analysis (PCA) and Pearson correlation analysis to identify relationships between the concentration of PM10 in the atmosphere and rainwater quality. In spring, the daily average concentration of PM10 (34.11 ㎍/m3) and PM2.5 (19.23 ㎍/m3) in the atmosphere were relatively high, while the value of daily precipitation amount and rainfall intensity were relatively low. In addition, the concentration of PM10 in the atmosphere showed a significant positive correlation with the concentration of water-soluble ions (r = 0.99) and EC (r = 0.95) and a negative correlation with the pH (r = -0.84) of rainwater samples. In summer, the daily average concentration of PM10 (27.79 ㎍/m3) and PM2.5 (17.41 ㎍/m3) in the atmosphere were relatively low, and the maximum rainfall intensity was 81.6 mm/h, recording a large amount of rain for a long time. The results indicated that there was no statistically significant correlation between the concentration of PM10 in the atmosphere and rainwater quality in summer.

Future PMPs projection according to precipitation variation under RCP 8.5 climate change scenario (RCP 8.5 기후변화 시나리오의 강수량 변화에 따른 미래 PMPs의 전망)

  • Lee, Okjeong;Park, Myungwoo;Lee, Jeonghoon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.107-119
    • /
    • 2016
  • Since future climate scenarios indicate that extreme precipitation events will intensity, probable maximum precipitations (PMPs) without being taken climate change into account are very likely to be underestimated. In this study future PMPs in accordance with the variation of future rainfall are estimated. The hydro-meteorologic method is used to calculate PMPs. The orographic transposition factor is applied in place of the conventional terrain impact factor which has been used in previous PMPs estimation reports. Future DADs are indirectly obtained by using bias-correction and moving-averaged changing factor method based on daily precipitation projection under KMA RCM (HEDGEM3-RA) RCP 8.5 climate change scenario. As a result, future PMPs were found to increase and the spatially-averaged annual PMPs increase rate in 4-hour and $25km^2$ was projected to be 3 mm by 2045. In addition, the increased rate of future PMPs is growing increasingly in the future, but it is thought that the uncertainty of estimating PMPs caused by future precipitation projections is also increased in the distant future.

Projecting forest fire potential in the Baekdudaegan of the Chungcheong region under the SSP scenario climate change using KBDI Drought Index (KBDI 가뭄지수를 이용한 SSP 기후변화 시나리오하의 충청지역 백두대간 산불 잠재력 전망)

  • Choi, Jaeyong;Kim, Su-Jin;Jung, Huicheul;Kim, Sung-Yeol;Moon, Geon-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, climate change has been regarded as a major cause of large-scale forest fires worldwide, and there is concern that more frequent and severe forest fires will occur due to the level of greenhouse gas emissions. In this study, the daily Keetch and Byram Drought Index (KBDI) of the Baekdudaegan in Chungcheong region including Sobaeksan, Songnisan, and Woraksan National Parks were calculated to assess effect of climate change on the forest fire potential- severity of annual maximum KBDI and frequency of high KBDI days. The present (2000~2019) and future KBDI(2021~2040, 2041~2060, 2081~2090) were calculated based on the meteorological observation and the ensemble regional climate model of the SSP1-2.6 and SSP5-8.5 scenarios with a spatial resolution of 1-km provided by Korea Meteorological Administration(KMA). Under the SSP5-8.5 scenario, 6.5℃ increase and 14% precipitation increase are expected at the end of the 21st century. The severity of maximum daily KBDI increases by 48% (+50mm), and the frequency of high KBDI days (> 100 KBDI) increases more than 100 days, which means the high potential for serious forest fires. The analysis results showed that Songnisan National Park has the highest potential for forest fire risk and will continue to be high in intensity and frequency in the future. It is expected that the forest vulnerability of the Baekdudaegan in the Chungcheong region will greatly increase and the difficulty in preventing and suppressing forest fires will increase as the abundance of combustible materials increases along with climate changes.

The Nopsae;a Foehn type wind over the Young Suh region of central Korea (영서지방의 푄현상)

  • ;Lee, Hyon-Young
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.3
    • /
    • pp.266-280
    • /
    • 1994
  • Upper-air synoptic data and surface weather elements such as temperature, relative humidity, wind speed, cloud and precipitation were analyzed in some detail to determine the characteristics of Nopsae, a foehn-like surface wind over the Youngsuh region of Central Korea. NOAA AVHRR and GMS images are also referenced to identify the distribution of clouds and precipitation to classify the tpyes of foehn over the study area. The data period examined is from 1982 until 1993 of spring and summer months from March through August. Results of the anaylsis are as follows. Warm and dry air penetration over the Younesuh region has experienced on foehn days occured between March 21 and August 10 during study perion. The mean annual number of foehn the days were 28. Foehn phenomena were prominent during March 21-25, April 5-15, May 25-June 10, and June 26-30 pentads. The intensity of the phenomena can be evaluated as the difference of daily maximum temperature and relative humidity between windward sites and leeward sites. The intensity of daily maximum temperature reached 14.5$^{\circ}C$, but most values were in the range of 5.0-7.5$^{\circ}C$ (61%). Although strong intensity of foehns usually develop in June, it is common that farmers in the region experince more aridity during the foehnday of April and May due to the transplantation of rice seedlings. Long-run foehn are not common phenomena and 55% of foehn terminate in one day, but there is a record that Nopsae persisted up to 9 days continuously. The author identified using the cloud and precipitation data out of NOAA-11, AVHRR and GMS images is that one of them has no precipitation over windward side. The available data and the results of the analysis are somewhat inadequate. Since the results imply that wave phenomenon is potentially important in terms of local surface weather and vertical momentum transport, more detailed theoretical and observational studies are necessary to clarify the mechanism and the impacts of Nopsae.

  • PDF

Analysis of the effect of climate change on IDF curves using scale-invariance technique: focus on RCP 8.5 (Scale-Invariance 기법을 이용한 IDF 곡선의 기후변화 영향 분석: RCP 8.5를 중심으로)

  • Choi, Jeonghyeon;Lee, Okjeong;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.995-1006
    • /
    • 2016
  • According to 5th IPCC Climate Change Report, there is a very high likelihood that the frequency and intensity of extreme rainfall events will increase. In reality, flood damage has increased, and it is necessary to estimate the future probabilistic design rainfall amount that climate change is reflected. In this study, the future probabilistic design precipitation amount is estimated by analyzing trends of future annual maximum daily rainfall derived by RCP 8.5 scenarios and using the scale-invariance technique. In the first step, after reviewing the time-scale characteristics of annual maximum rainfall amounts for each duration observed from 60 sites operating in Korea Meterological Administration, the feasibility of the scale-invariance technique are examined using annual daily maximum rainfall time series simulated under the present climate condition. Then future probabilistic design rainfall amounts for several durations reflecting the effects of climate change are estimated by applying future annual maximum daily rainfall time series in the IDF curve equation derived by scale-invariance properties. It is shown that the increasing trend on the probabilistic design rainfall amount has resulted on most sites, but the decreasing trend in some regions has been projected.

Rainfall Trend Detection Using Non Parametric Test in the Yom River Basin, Thailand

  • Mama, Ruetaitip;Bidorn, Butsawan;Namsai, Matharit;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.424-424
    • /
    • 2017
  • Several studies of the world have analyzed the regional rainfall trends in large data sets. However, it reported that the long-term behavior of rainfall was different on spatial and temporal scales. The objective of this study is to determine the local trends of rainfall indices in the Yom River Basin, Thailand. The rainfall indices consist of the annual total precipitation (PRCTPOP), number of heavy rainfall days ($R_{10}$), number of very heavy rainfall days ($R_{20}$), consecutive of dry days (CDD), consecutive of wet days (CWD), daily maximum rainfall ($R_{x1}$), five-days maximum rainfall ($R_{x5}$), and total of annual rainy day ($R_{annual}$). The rainfall data from twelve hydrological stations during the period 1965-2015 were used to analysis rainfall trend. The Mann-Kendall test, which is non-parametric test was adopted to detect trend at 95 percent confident level. The results of these data were found that there is only one station an increasing significantly trend in PRCTPOP index. CWD, which the index is expresses longest annual wet days, was exhibited significant negative trend in three locations. Meanwhile, the significant positive trend of CDD that represents longest annual dry spell was exhibited four locations. Three out of thirteen stations had significant decreasing trend in $R_{annual}$ index. In contrast, there is a station statistically significant increasing trend. The analysis of $R_{x1}$ was showed a station significant decreasing trend at located in the middle of basin, while the $R_{x5}$ of the most locations an insignificant decreasing trend. The heavy rainfall index indicated significant decreasing trend in two rainfall stations, whereas was not notice the increase or decrease trends in very heavy rainfall index. The results of this study suggest that the trend signal in the Yom River Basin in the half twentieth century showed the decreasing tendency in both of intensity and frequency of rainfall.

  • PDF

Effects of Forest Road Construction on Stream Water Qualities(I) - The Variation of Suspended Sediment by Forest Road Construction - (임도개설(林道開設)이 계류수질(溪流水質)에 미치는 영향(影響)(I) - 임도개설(林道開設)에 따른 부유토사량(浮遊土砂量)의 변화(變化) -)

  • Chun, Kun-Woo;Kim, Min-Sik;Ezaki, Tsugio
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.280-287
    • /
    • 1996
  • This study was carried out to investigate the export rate of suspended sediment by different precipitation intensity after forest road construction for torrential streams on three different watersheds with various forest road density(Watershed A : 6.67m/ha, Watershed B : 5.52m/ha, and Watershed C : control) in the Experimental Forest of Kangwon National University. The results were as follows. 1. Closely related to the the amount of rainfall in both 1994 and 1995, the average streanfkiw rate was less than $0.25{\times}10^4m^3/day$ during May and June and $5.0{\times}10^4m^3/day$ during July and August. More than $25{\times}10^4m^3/day$ of streanflow rate was occurred twice in 1994 and seven times in 1995. 2. The amount of suspended sediment in three watersheds was less than standard of drinking water(25mg/l) before road construction with daily rainfall of 74mm, 92mm, and 120mm in 1994, also after road construction with daily rainfall of 21mm and 47mm in 1995. But, under the 192mm of daily rainfall, Watershed C did not show the difference in the amount of suspended sediment, however, Watershed A and B produced 1,525mg/l and 775mg/l, respectively, which is 61 and 31 fold of stabdard of drinking water, and construction to export for 35 hours after rainfall. 3. The maximum amount of suspended sediment was less than the standard of drinking water with light rainfall before and after road construction. Under the 192mm of daily rainfall, the maximum amounts of suspended sediment in Watershed A and B were 13,150mg/l and 2,690mg/l, of 526 and 108 fold of standard of drinking water, respectively, showing obvious water pollution by sedimentation. Results of the study indicated that the forest road construction had great influence on the sedimentation, and getting increased by higher road density and heavier rainfall. Therefore such practices as vegetation covering and soil erosion control facility should be established accompanying with forest road construction to prevent from sedimentation.

  • PDF