• 제목/요약/키워드: d-q reference frame

검색결과 61건 처리시간 0.023초

불평형부하 시 독립형 인버터의 데드타임 보상기법 (Dead Time Compensation of Stand-alone Inverter Under Unbalanced Load)

  • 정진용;조종민;이준원;채우규;차한주
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.115-121
    • /
    • 2015
  • Stand-alone inverter supplies constant voltage to loads. However, when a three-phase stand-alone inverter supplies unbalanced load, the generated output voltages also become unbalanced. The nonlinear characteristics of inverter dead time cause a more serious distortion in the output voltage. With unbalanced load, voltage distortion caused by dead time differs from voltage distortion under balanced load. Phase voltages in the stationary reference frame include unbalanced odd harmonics and then, d-q axis voltages in the synchronous reference frame have even harmonics with different magnitude, which are mitigated by the proposed multiple resonant controller. This study analyzes the voltage distortion caused by unbalanced load and dead time, and proposes a novel dead time compensation method. The proposed control method is tested on a 10-kW stand-alone inverter system, and shows that total harmonic distortion (THD) is reduced to 1.5% from 4.3%.

Online Dead Time Effect Compensation Algorithm of PWM Inverter for Motor Drive Using PR Controller

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1137-1145
    • /
    • 2017
  • This paper proposes the dead time effect compensation algorithm using proportional resonant controller in pulse width modulation inverter of motor drive. To avoid a short circuit in the dc link, the dead time of the switch device is surely required. However, the dead time effect causes the phase current distortions, torque pulsations, and degradations of control performance. To solve these problems, the output current including ripple components on the synchronous reference frame and stationary reference frame are analyzed in detail. As a results, the distorted synchronous d-and q-axis currents contain the 6th, 12th, and the higher harmonic components due to the influence of dead time effect. In this paper, a new dead time effect compensation algorithm using proportional resonant controller is also proposed to reduce the output current harmonics due to the dead time and nonlinear characteristics of the switching devices. The proposed compensation algorithm does not require any additional hardware and the offline experimental measurements. The experimental results are presented to demonstrate the effectiveness of the proposed dead time effect compensation algorithm.

A New Approach for Pulsating Torque Minimization of BLDC Motor

  • Lee, Young-Jin;Lee, Man-Hyung;Park, Sung-Jun;Park, Han-Woong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.831-838
    • /
    • 2001
  • Torque ripple control of brushless DC motor has long been the main issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise need to be minimized. The vast majority of the methods for suppressing the torque ripple require the Fourier series analysis and either the iterative or least mean square minimization. In this paper, a novel approach based on the d-q-0 reference frame that achieves ripple-free torque control with maximum efficiency is presented. The proposed method optimizes the reference phase current waveforms including even the case of 3-phase unbalanced condition, and the motor winding currents are controlled to track the optimized current waveforms by the delta modulation technique. As a results, the proposed approach provides a simple and yet effectine means for obtaining the optimal motor excitation currents. The validity and applicability of the proposed control scheme are verified through simulations and experimental investigations.

  • PDF

브러시리스 영구자석 전동기의 새로운 순시토오크 제어 방법 (A Novel Instantaneous Torque Control Scheme of Brushless Permanent Magnet Motor)

  • 최근국;박한웅;박성준;원태현;송달섭;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.862-867
    • /
    • 1999
  • In general, the realization of high performance brushless permanent magnet motors which are widely used in servo drive is focused on the linear control for ripple-free torque. This is also the main problem that should be solved in all AC motors including induction motor to achieve high performance control, and recent papers deal with this problem. In this paper, the novel optimal excitation scheme of brushless permanent magnet motor producing loss-minimized ripple-free torque based on the d-q-0 reference frame is presented including 3 phase unbalanced condition. The optimized phase current waveforms that are obtained by the proposed method can be a reference values and the motor winding currents are forced to track it by delta modulation technique. As a results, it can be shown that the proposed work can minimize the torque ripple by the optimal excitation current for brushless permanent magnet motor with any arbitrary phase back EMF waveform. Simulation and experimental results prove the validity and practical applications of the proposed control scheme.

  • PDF

A New Vector Control Scheme of Brushless DC Motor

  • Park, Sung-Jun;Choo, Young-Bae;Park, Han-Woong;Park, Jin-Ghil;Kim, Cheul-U
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.502-505
    • /
    • 1998
  • In this paper, the new vector control scheme of BLDCM producing loss-minimized ripple-free torque based on the d-q-Ο reference frame is presented including 3 phase unbalanced condition. The optimized phase current wave-forms that are obtained by the proposed method can be a reference values and the motor winding currents are forced to track it by delta modulation technique. As a results, it can be shown that the proposed work provides a simple and clear way to obtain an optimal motor excitation current.

  • PDF

Wind Power Grid Integration of an IPMSG using a Diode Rectifier and a Simple MPPT Control for Grid-Side Inverters

  • Ahmed, Tarek;Nishida, Katsumi;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제10권5호
    • /
    • pp.548-554
    • /
    • 2010
  • In this paper, a 1.5 kW Interior Permanent Magnet Synchronous Generator (IPMSG) with a power conditioner for the grid integration of a variable-speed wind turbine is developed. The power-conditioning system consists of a series-type 12-pulse diode rectifier powered by a phase shifting transformer and then cascaded to a PWM voltage source inverter. The PWM inverter is utilized to supply sinusoidal currents to the utility line by controlling the active and reactive current components in the q-d rotating reference frame. While the q-axis active current of the PWM inverter is regulated to follow an optimized active current reference so as to track the maximum power of the wind turbine. The d-axis reactive current can be adjusted to control the reactive power and voltage. In order to track the maximum power of the wind turbine, the optimal active current reference is determined by using a simple MPPT algorithm which requires only three sensors. Moreover, the phase angle of the utility voltage is detected using a simple electronic circuit consisting of both a zero-crossing voltage detecting circuit and a counter circuit employed with a crystal oscillator. At the generator terminals, a passive filter is designed not only to decrease the harmonic voltages and currents observed at the terminals of the IPMSG but also to improve the generator efficiency. The laboratory results indicate that the losses in the IPMSG can be effectively reduced by setting a passive filter at the generator terminals.

고조파전류 보상 기능을 갖는 능동 직렬 전압보상기의 제어 및 보상특성에 관한 연구 (A Study on Control and Compensating Characteristics of Active Series Voltage Compensator with Harmonic Current Compensating Capability)

  • 이승요;김홍성;최규하;신우석;김홍근
    • 전력전자학회논문지
    • /
    • 제5권5호
    • /
    • pp.484-492
    • /
    • 2000
  • 본 논문에서는 고조파전류 보상기능을 갖는 전압 보상기에 관한 연구를 수행하고 그 보상 특성을 해석하였다. 제안된 보상시스템은 하이브리드형 능동전력필터에서와 같이 LC로 구성되어 전력선에 병렬로 연결되는 수동필터와 직렬 변압기를 사용하여 전력선에 직렬로 연결되는 PWM 컨버터를 동시에 사용하는 회로구조를 갖는다. 제안된 보상시스템을 통해 다이오드 정류기와 같은 비선형 부하로 인해 발생되는 고조파 전류의 보상 및 전원 이상 현상으로 발생되는 전원측 이상 전압의 보상을 모두 수행한다. 단상 등가회로를 통해 보상시스템의 동작 원리를 설명하고 d-q 동기좌표계 축 상에서 보상시스템의 모든 제어를 수행하는 제어 알고리즘의 개발을 수행하였으며 실험을 통해 제안된 보상시스템의 보상특성을 확인하였다.

  • PDF

동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어 (Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator)

  • 송승호;김성주;함년근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Design of an Adaptive Backstepping Controller for Doubly-Fed Induction Machine Drives

  • Dehkordi, Behzad Mirzaeian;Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.343-353
    • /
    • 2009
  • In this paper, a nonlinear controller is proposed for Doubly-Fed Induction Machine (DFIM) drives. The nonlinear controller is designed based on an adaptive backstepping control technique, using a fifth order model of an induction machine in the synchronous d & q axis rotating reference frame, whose d axis coincides with the space voltage vector of the main AC supply, and using the rotor current and stator flux components as state variables. The nonlinear controller can perfectly track the torque reference signal measured in the stator terminals under the condition of unity power factor regulation, in spite of the stator and rotor resistance variations. In order to make the drive system capable of operating in the motoring and generating modes below and above the synchronous speed, two level Space-Vector PWM (SV-PWM) back-to-back voltage source inverters are employed in the rotor circuit. It is confirmed through computer simulation results that the proposed control approach is effective and valid.

Maximum Power Point Tracking Control Scheme for Grid Connected Variable Speed Wind Driven Self-Excited Induction Generator

  • El-Sousy Fayez F. M.;Orabi Mohamed;Godah Hatem
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.52-66
    • /
    • 2006
  • This paper proposes a wind energy conversion system connected to a grid using a self-excited induction generator (SEIG) based on the maximum power point tracking (MPPT) control scheme. The induction generator (IG) is controlled by the MPPT below the base speed and the maximum energy can be captured from the wind turbine. Therefore, the stator currents of the IG are optimally controlled using the indirect field orientation control (IFOC) according to the generator speed in order to maximize the generated power from the wind turbine. The SEIG feeds a (CRPWM) converter which regulates the DC-link voltage at a constant value where the speed of the IG is varied. Based on the IG d-q axes dynamic model in the synchronous reference frame at field orientation, high-performance synchronous current controllers with satisfactory performance are designed and analyzed. Utilizing these current controllers and IFOC, a fast dynamic response and low current harmonic distortion are attained. The regulated DC-link voltage feeds a grid connected CRPWM inverter. By using the virtual flux orientation control and the synchronous frame current regulators for the grid connected CRPWM inverter, a fast current response, low harmonic distortion and unity power factor are achieved. The complete system has been simulated with different wind velocities. The simulation results are presented to illustrate the effectiveness of the proposed MPPT control scheme for a wind energy system. In the simulation results, the d-q axes current controllers and DC-link voltage controller give prominent dynamic response in command tracking and load regulation characteristics.