• 제목/요약/키워드: cytosolic phospholipase $A_2$

검색결과 64건 처리시간 0.029초

고려인삼의 파낙사다이올은 트롬빈 유인 혈소판응집반응에서 트롬복산 A2의 생성을 저해한다 (Panaxadiol from Panax ginseng C.A. Meyer Inhibits Synthesis of Thromboxane $A_2$ in Platelet Aggregation Induced by Thrombin)

  • Park, Hwa-Jin;Rhee, Man-Hee;Park, Kyeong-Mee;Nam, Ki-Yeul;Park, Ki-Hyun
    • Journal of Ginseng Research
    • /
    • 제17권2호
    • /
    • pp.131-134
    • /
    • 1993
  • Panaxadiol (PD) from Korean red ginseng C.A. Meyer did not control the concentration of cytosolic free $Ca^{2+}$ influxes by thrombin (5 $\mu$/ml). However, PD strongly inhibited the synthesis of thromboxane. $A_2$ (TX$A_2$) in the aggregation of human platelets induced by thrombin (5 $\mu$/ml). These rexults suggest that PD blocks the any Pathway transforming to TX$A_2$ from arachidonic acid (AA) which release out of plasma membrane phospholipids by $Ca^{2+}$-dependent phospholipase C or phospholipase $A_2$. It may be also concluded that PD has the antiplatelet function by inhibiting the synthesis of TX$A_2$, which known to be the potent stimulator of the aggregation of human platelet.

  • PDF

Arachidonic Acid Mediates Apoptosis Induced by N-Ethylmaleimide in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • 제17권4호
    • /
    • pp.379-387
    • /
    • 2009
  • We have previously reported that N-ethylmaleimide (NEM) induces apoptosis through activation of $K^+$, $Cl^-$-cotransport (KCC) in HepG2 human hepatoblastoma cells. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signals in the mechanism of the NEM-induced apoptosis. In these experiments we used arachidonyl trifluoromethylketone ($AACOCF_3$), bromoenol lactone (BEL) and p-bromophenacyl bromide (BPB) as inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$), the calcium-independent $PLA_2$ ($iPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. BEL significantly inhibited the NEM-induced apoptosis, whereas $AACOCF_3$ and BPB did not. NEM increased AA liberation in a dose-dependent manner, which was markedly prevented only by BEL. In addition AA by itself induced $K^+$ efflux, a hallmark of KCC activation, which was comparable to that of NEM. The NEM-induced apoptosis was not significantly altered by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with AA or 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, significantly induced apoptosis. Collectively, these results suggest that AA liberated through activation of $iPLA_2$ may mediate the NEMinduced apoptosis in HepG2 cells.

Prostaglandin E Synthase, a Terminal Enzyme for Prostaglandin E2 Biosynthesis

  • Kudo, Ichiro;Murakami, Makoto
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.633-638
    • /
    • 2005
  • Biosynthesis of prostanoids is regulated by three sequential enzymatic steps, namely phospholipase $A_2$ enzymes, cyclooxygenase (COX) enzymes, and various lineage-specific terminal prostanoid synthases. Prostaglandin E synthase (PGES), which isomerizes COX-derived $PGH_2$ specifically to $PGE_2$, occurs in multiple forms with distinct enzymatic properties, expressions, localizations and functions. Two of them are membrane-bound enzymes and have been designated as mPGES-1 and mPGES-2. mPGES-1 is a perinuclear protein that is markedly induced by proinflammatory stimuli, is down-regulated by anti inflammatory glucocorticoids, and is functionally coupled with COX-2 in marked preference to COX-1. Recent gene targeting studies of mPGES-1 have revealed that this enzyme represents a novel target for anti-inflammatory and anti-cancer drugs. mPGES-2 is synthesized as a Golgi membrane-associated protein, and the proteolytic removal of the N-terminal hydrophobic domain leads to the formation of a mature cytosolic enzyme. This enzyme is rather constitutively expressed in various cells and tissues and is functionally coupled with both COX-1 and COX-2. Cytosolic PGES (cPGES) is constitutively expressed in a wide variety of cells and is functionally linked to COX-1 to promote immediate $PGE_2$ production. This review highlights the latest understanding of the expression, regulation and functions of these three PGES enzymes.

Effects of Exogenous ATP on Calcium Mobilization and Cell Proliferation in C6 Glioma Cell

  • Lee, Eun-Jung;Cha, Seok-Ho;Lee, Woon-Kyu;Lee, Kweon-Haeng;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.419-425
    • /
    • 1998
  • To clarify the effect of extracellular ATP in cultured C6 glioma cells, ATP-induced cytosolic free calcium ($[Ca^{2+}]_i$) mobilization and cell proliferation were investigated. ATP-induced $[Ca^{2+}]_i$ increased in a dose-dependent manner $(10^{-7}\;M{\sim}10^{-3}\;M)$. ATP-induced $[Ca^{2+}]_i$ increases were slightly slowed in extracellular calcium-free conditions especially in sustained phase. ATP-induced $[Ca^{2+}]_i$ increment was also inhibited by the pretreatment of U73122, a phospholipase C (PLC) inhibitor, in a time-dependent manner. Suramin, a putative $P_{2Y}$ receptor antagonist, dose-dependently weakened ATP-induced $[Ca^{2+}]_i$ mobilization. Significant increases in cell proliferation were observed at 2, 3, and 4 days after ATP was added. Stimulated cell proliferation was also observed with adenosine at days 2 and 3. This cell proliferation was significantly inhibited by the treatment with suramin. Ionomycin also stimulated cell proliferation in a concentration-dependent manner. In conclusion, we suggest that extracellular ATP stimulates C6 glioma cell proliferation via intracellular free calcium mobilization mediated by purinoceptor.

  • PDF

Methylmercury Toxicity Is Induced by Elevation of Intracellular $Ca^{2+}$ through Activation of Phosphatidylcholine-Specific Phospholipase C

  • Chin, Mi-Reyoung;Kang, Mi-Sun;Jeong, Ju-Yeon;Jung, Sung-Yun;Seo, Ji-Heui;Kim, Dae-Kyong
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2003년도 추계국제학술대회
    • /
    • pp.13-13
    • /
    • 2003
  • Methylmercury (MeHg) is a ubiquitous environmental toxicant that can be exposed to humans by ingestion of contaminated food including fish and bread. MeHg has been suggested to exert its toxicity through its high reactivity to thiols, generation of arachidonic acid and reactive oxygen species (ROS), and elevation of intracellular $Ca^{2+}$ levels ([$Ca^{2+}$$_{i}$). However, the precise mechanism has not been fully defined. Here we show that phosphatidylcholine-specific phospholipase C (PC-PLC) is a critical pathway for MeHg-induced toxicity. MeHg activated the acidic form of sphingomyelinase (A-SMase) and group IV cytosolic phospholipase $A_2$ ($cPLA_2$) downstream of PC-PLC, but these enzymes as well as protein kinase C were not linked to MeHg's toxicity. Furthermore, MeHg produced ROS, which did not cause the toxicity. However, D6O9, an inhibitor of PC-PLC, significantly reversed the toxicity in a time- and dose-dependent manner in MDCK and SH-5YSY cells. Addition of EGTA to culture media resulted in partial decrease of [$Ca^{2+}$$_{i}$ and partially blocked cell death. In contrast, D609 completely prevented cell death with parallel decreases in diacylglycerol and [$Ca^{2+}$$_{i}$. Together, our findings indicated that MeHg-induced toxicity was caused by elevation of [$Ca^{2+}$]$_{i}$ through activation of PC-PLC. The toxicity was not attributable to the signaling pathways such as $cPLA_2$, A-SMase, and PKC, or to the generation of ROS.

  • PDF

Saucerneol F, a New Lignan Isolated from Saururus chinensis, Attenuates Degranulation via Phospholipase Cγ1 Inhibition and Eicosanoid Generation by Suppressing MAP Kinases in Mast Cells

  • Lu, Yue;Son, Jong-Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • 제20권6호
    • /
    • pp.526-531
    • /
    • 2012
  • During our on-going studies to identify bioactive compounds in medicinal herbs, we found that saucerneol F (SF), a naturally occurring sesquilignan isolated from Saururus chinensis (S. chinensis), showed in vitro anti-inflammatory activity. In this study, we examined the effects of SF on the generation of 5-lipoxygenase (5-LO) dependent leukotriene $C_4$ ($LTC_4$), cyclooxygenase-2 (COX-2) dependent prostaglandin $D_2$ ($PGD_2$), and on phospholipase $C{\gamma}1$ ($PLC{\gamma}1$)-mediated degranulation in SCF-induced mouse bone marrow-derived mast cells (BMMCs). SF inhibited eicosanoid ($PGD_2$ and $LTC_4$) generation and degranulation dose-dependently. To identify the molecular mechanisms underlying the inhibition of eicosanoid generation and degranulation by SF, we examined the effects of SF on the phosphorylation of $PLC{\gamma}1$, intracellular $Ca^{2+}$ influx, the translocation of cytosolic phospholipase $A_2$ ($cPLA_2$) and 5-LO, and on the phosphorylation of MAP kinases (MAPKs). SF was found to reduce intracellular $Ca^{2+}$ influx by inhibiting $PLC{\gamma}1$ phosphorylation and suppressing the nuclear translocations of $cPLA_2$ and 5-LO via the phosphorylations of MAPKs, including extracellular signal-regulated protein kinase-1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Taken together, these results suggest that SF may be useful for regulating mast cell-mediated inflammatory responses by inhibiting degranulation and eicosanoid generation.

The inhibitory effects of glabridin on human platelet aggregation and thrombus formation

  • Sang-Nam Park;Hyuk-Woo Kwon
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.455-461
    • /
    • 2023
  • Glycyrrhiza glabra is a well-known medicinal herb that grows in various parts of the world and glabridin is a major chemical compound that is found in the root extract of Glycyrrhiza glabra. Glabridin is a natural compound known to have antioxidant, anti-inflammatory, anti-atherogenic, anti-osteoporotic and skin-whitening. In this study, we investigated if glabridin inhibited platelet aggregation and thrombus formation. We observed that glabridin inhibited collagen-induced platelet aggregation and suppressed signal transduction molecules such as phosphatidylinositol-3 kinase (PI3K), Akt, glycogen synthase kinase-3α/β (GSK-3α/β), SYK, cytosolic phospholipase A2, and p38 expression. In addition, glabridin suppressed thromboxane A2 generation and thrombin-induced clot retraction. Taken together, glabridin showed strong antiplatelet effects and may be used to block thrombosis- and platelet-mediated cardiovascular diseases.

Purification and Characterization of a Cytosolic, 42 kDa and $Ca^{2+}$-dependent Phospholipase $A_2$ from Bovine Red Blood Cells : Its Involvement in $Ca^{2+}$-dependent Release of Arachidonic Acid from Mammalian Red Blood Cells-

  • Shin, Hae-Sook;Chin, Mi-Reyoung;Kim, Jung-Sun;Chung, Jin-Ho;Ryu, Chung-Kyu;Jung, Sung-Yun;Kim, Dae-Kyong
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.248-248
    • /
    • 2002
  • PDF

Arachidonic Acid Activates $K^+$-$Cl^-$-cotransport in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.401-408
    • /
    • 2009
  • $K^+$-$Cl^-$-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced $K^+$ efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7 -dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1Hinden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activatorinduced $K^+$ efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calciumindependent $PLA_2$ ($iPLA_2$), whereas it was not significantly altered by arachidonyl trifluoromethylketone ($AACOCF_3$) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. NEM increased AA liberation in a doseand time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas $AACOCF_3$ and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that $iPLA_2$-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.

쌍별귀뚜라미 에탄올 추출물의 혈소판응집반응과 당단백질 IIb/IIIa 활성화 억제 효과 (Inhibitory effect of ethanol extract of Gryllus bimaculatus on platelet aggregation and glycoprotein IIb/IIIa activation)

  • 권혁우;이만휘;신정해
    • Journal of Applied Biological Chemistry
    • /
    • 제66권
    • /
    • pp.236-243
    • /
    • 2023
  • 혈소판은 1차 및 2차 지혈에서 근본적인 역할을 하는 세포지만 혈소판의 과도한 활성화는 혈전증을 유발할 수 있다. 따라서 혈소판 응집의 적절한 조절은 혈전증 매개 질환을 예방하는 데 중요하다. 최근 곤충소재의 개발이 주목을 받고 있다. 다양한 곤충 자원 중 고영양 기능성 식품원으로는 쌍별귀뚜라미(Gryllus bimaculatus)와 같은 곤충류가 있다. 쌍별귀뚜라미 는 고단백 및 불포화지방산을 함유하고 있으며 2015년 9월 식품의약품안전처로부터 식품원료로 등록되었다. 본 연구에서는 쌍별귀뚜라미 에탄올 추출물(G. bimaculatus extract)이 혈소판 응집, 세포 내 Ca2+ 조절, thromboxane A2 생산 및 glycoprotein IIb/IIIa (integrin αIIb/β3) 활성화를 억제하는지 여부를 확인하고. 1, 4, 5-triphosphate receptor type I, extracellular signal-regulated kinase, cytosolic phospholipase A2, mitogen-activated protein kinases p38, vasodilator-stimulated phosphoprotein, phosphatidylinositol-3 kinase, Akt, glycogen synthase kinase-3α/β 및 SYK 같은 신호 분자를 조절할 수 있는지 여부를 조사했다. 우리는 쌍별귀뚜라미 추출물이 혈소판 관련 혈전증 및 심혈관 질환을 예방할 수 있는 잠재적인 치료 약물로 가치가 있음을 규명하였다.