• Title/Summary/Keyword: cytosolic enzyme

Search Result 124, Processing Time 0.033 seconds

New Insights in Arachidonate Cascade: Biochemical Characterization and Biological Significance of Three Distinct Prostaglandin E Synthases

  • Kudo, Ichiro
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.111-113
    • /
    • 2003
  • Biosynthsis of prostaglandin E2 (PGE2), the most common prostanoid with potent and diverse bio-activities, is regulated by three sequential enzymatic steps composed of phospholipase A2, cyclooxygenase (COX), and prostaglandin E synthase (PGES). Recently, three distinct PGESs have been identified; two of them are membrane-bound enzymes, mPGES-1 and mPGES-2, and the third one is a cytosolic enzyme, cPGES. (omitted)

  • PDF

BIOACTIVATION OF DIBROMOETHANE BY CONJUGATION WITH GLUTAHIONE

  • Kim, Dong-Hyun
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.231-238
    • /
    • 1991
  • The pesticide and carcinogen ethylene dibromide(EDB) is metabolized both by cytosolic GSH S-transferase and by microsomal mixed function oxygenase. Cytochrome P-450 IIE1 appears to be major enzyme to metabolize EDB.EDB is activated to a mutagen by enzymatic conjugation with glutathione (GSH). Such activation is an exception to the general mode of detoxification via GSH S-transferase action. The primary DNA adduct (>95) is S-[2-(N7-guanyl)ethyl] GSH and a minor adduct is S-[2-(N7-guanyl)ethyl]cysteine, which is excreted in the urine and may serve as a biomarker of damage.

  • PDF

Acetoacetyl-CoA Synthetase, a Novel Cytosolic Ketone Body-Utilizing Enzyme that Specifically Activates Acetoacetate to its Coenzyme A Ester

  • Fukui, Tetsuya
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.70-70
    • /
    • 2003
  • In mammalians, ketone bodies (acetoacetate, D(-)-3-hydroxybutyrate and acetone) are generated mainly in the liver via the 3-hydroxy-3-methylglutaryl-CoA pathway, carried to and utilized in extrahepatic tissues as an energy source during starvation and diabetes in particular due to their overproduction as the consequence of elevated fatty acid oxidation and lowered glucose metabolism. (omitted)

  • PDF

Preventive Effect of Ginseng Butanol Fraction against Acetaldehyde - Induced Acute Toxicity (아세트알데히드로 유도된 급성독성에 대한 인삼부탄올 분획의 방어작용)

  • Keun Huh;Tae
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.5-7
    • /
    • 1989
  • The objective of this study was to investigate the preventive effect of ginseng on acetaldehyde-induced acute toxicity in mice . Compared to the control group, treatment with acetaldehyde inhibited the hepatic cytosolic xanthine oxidise activity with increase in dose. The inhibition of enzyme activity was not changed after dialysis. Pretreatment with ginseng butanol fraction prevented the inhibition of enzyme activity by acetaldehyde. In conjunction with the our previous results (Yakhak Hoeji, 29, 18 (1985)), these results suggest that the most likely mechanism for the observed preventive effects of ginseng against the acetaldehyde-induced acute toxicity may be the decrease hepatic acetaldehyde level.

  • PDF

The Expression of a Cytosolic Fructose-1,6-Bisphosphatase, a Key Enzyme in Sucrose Biosynthesis, Gene was Diurnally Fluctuated and Increased in Cold Acclimated Leaves of Chinese Cabbage

  • Leen, Jeong-Yeo;Song, Ha-Young;Lim, Yong-Pyo;Hur, Yoon-Kang
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.123-131
    • /
    • 2006
  • Chinese cabbage (Brassica rapa ssp. pekinesis) is one of the most important vegetable crops in korea and other East Asian countries. Cytosolic fructose-1,6-bisphospha-tase (cytFBPase) is a key enzyme in sucrose biosyn-thesis, which controls the sucrose levels as well as the productivity at plants. The Chinese cabbage cytFBPase gene, BrFBPase, encodes the 340 amino acid polypep-tide, giving a theoretical molecular weight of 37.2 kD and a isolectric point of 5.4. BrFBPase showed high sequence identity with Brassica homologs and its functional domains, such as 12,6P$_2$ binding site or active site and F6P binding site, were highly conserved in diverse sources of organisms. Although the genome of Chinese cabbage seemed to be triplicated, BrFBPase appears to be a single copy gene. The expression of BrFBPase was examined at transcript and protein levels under various conditions. BrFBPase expression was observed only in photosynthetic source tissue, not in sink tissue. The expression was slightly higher during the day than at night, and it showed a diurnal cycle with circadian rhythmicity. Short-term exposure to low temperature inhibited the expression of the BrFBPase, while long-term exposure increased the expression, supporting that sugar levels are high in late autumn when temperature are low.

Dehydroepiandrosterone supplement increases malate dehydrogenase activity and decreases NADPH-dependent antioxidant enzyme activity in rat hepatocellular carcinogenesis

  • Kim, Jee-Won;Kim, Sook-Hee;Choi, Hay-Mie
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.80-84
    • /
    • 2008
  • Beneficial effects of dehydroepiandrosterone (DHEA) supplement on age-associated chronic diseases such as cancer, cardiovascular disease, insulin resistance and diabetes, have been reported. However, its mechanism of action in hepatocellular carcinoma in vivo has not been investigated in detail. We have previously shown that during hepatocellular carcinogenesis, DHEA treatment decreases formation of preneoplastic glutathione S-transferase placental form-positive foci in the liver and has antioxidant effects. Here we aimed to determine the mechanism of actions of DHEA, in comparison to vitamin E, in a chemically-induced hepatocellular carcinoma model in rats. Sprague-Dawley rats were administered with control diet without a carcinogen, diets with 1.5% vitamin E, 0.5% DHEA and both of the compounds with a carcinogen for 6 weeks. The doses were previously reported to have anti-cancer effects in animals without known toxicities. With DHEA treatment, cytosolic malate dehydrogenase activities were significantly increased by ${\sim}5$ fold and glucose 6-phosphate dehydrogenase activities were decreased by ${\sim}25%$ compared to carcinogen treated group. Activities of Se-glutathione peroxidase in the cytotol was decreased siguificantly with DHEA treatment, confirming its antioxidative effect. However, liver microsomal cytochrome P-450 content and NADPH-dependent cytochrome P-450 reductase activities were not altered with DHEA treatment. Vitamin E treatment decreased cytosolic Se-glutathione peroxidase activities in accordance with our previous reports. However, vitamin E did not alter glucose 6-phosphate dehydrogenase or malate dehydrogenase activities. Our results suggest that DHEA may have decreased tumor nodule formation and reduced lipid peroxidation as previously reported, possibly by increasing the production of NADPH, a reducing equivalent for NADPH-dependent antioxidant enzymes. DHEA treatment tended to reduce glucose 6-phosphate dehydrogenase activities, which may have resulted in limited supply for de novo synthesis of DNA via inhibiting the hexose monophophaste pathway. Although both DHEA and vitamin E effectively reduced preneoplastic foci in this model, they seemed to fimction in different mechanisms. In conclusion, DHEA may be used to reduce hepatocellular carcinoma growth by targeting NADPH synthesis, cell proliferation and anti-oxidant enzyme activities during tumor growth.

Cordyceps militaris Increases Hepatic Glucokinase Activities (Cordyceps miiitaris에 함유된 혈당강하 성분이 간세포 Glucokinase활성에 미치는 영향)

  • Kim, Hyun-Sook;Roh, Young-Joo;Choe, Myeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.158-161
    • /
    • 2005
  • We have isolated fractions from Cordyceps militaris and Paecilomyces japonica and investigated their effects on the activity of rat liver cytosolic glucokinase, a key metabolic enzyme involved in carbohydrate metabolism. The dried powder of the C. militaris and P. japonica were successively extracted with ethanol and with 70% ethanol. The residue was exhaustively extracted with hot water. The extract was dialyzed against water, and to the non-dialyzable solution was added 2 volumes of ethanol. The precipitate was collected by centrifugation dispered in water, and lyophilized to afford fraction A. The residue after hot-water extraction was suspended in 5% sodium carbonate. The final residue was suspended in 5% NaOH. The alkaline suspension was purified in a similar manner as described above to afford fraction B. Hepatic glucokinase activities of the fraction A extracted from C. militaris and P. japonica were 371.4 and 379%, respectively. The fraction B was 314.2 and 147.4%. The activity of fraction B of C. militaris extracts was higher than that of P. japonica. Liver cytosolic glucokinase activity of rats fed normal diet supplemented with 0.1% C. militaris was 1316%. In conclusion, the present study has demonstrated that C. militaris extracts were able to prevent sudden postprandial peaks in blood glucose as a result of a marked increase in the liver cytosolic glucokinase activities.

Glutamine Inhibits TNF-α-induced Cytosolic Phospholipase A2 Activation via Upregulation of MAPK Phosphatase-1

  • Yoon, So Young;Jeong, Soo-Yeon;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.27 no.4
    • /
    • pp.223-230
    • /
    • 2021
  • Tumor necrosis factor alpha (TNF-α) is a principal regulator of inflammation and immunity. The proinflammatory properties of TNF-α can be attributed to its ability to activate the enzyme cytosolic phospholipase A2 (cPLA2), which generates potent inflammatory lipid mediators, eicosanoids. L-glutamine (Gln) plays physiologically important roles in various metabolic processes. We have reported that Gln has a potent anti-inflammatory activity via rapid upregulation of mitogen-activated protein kinases (MAPKs) phosphatase (MKP)-1, which preferentially dephosphorylates the key proinflammatory enzymes, p38 MAPK and cytosolic phospholipase A2 (cPLA2). In this study, we have investigated whether Gln could inhibit TNF-α-induced cPLA2 activation. Gln inhibited TNF-α-induced increases in cPLA2 phosphorylation in the lungs and blood levels of the cPLA2 metabolites, leukotrine B4 (LTB4) (lipoxygenase metabolite) and prostaglandin E2 (PGE2) (cyclooxygenase metabolite). TNF-α increased p38 and cPLA2 phosphorylation and blood levels of LTB4 and PGE2, which were blocked by the p38 inhibitor SB202190. Gln inhibited TNF-α-induced p38 and cPLA2 phosphorylation and production of the cPLA2 metabolites. Such inhibitory activity of Gln was no longer observed in MKP-1 small interfering RNA-pretreated animals. Our data indicate that Gln inhibited TNF-α-induced cPLA2 phosphorylation through MKP-1 induction/p38 inhibition, and suggest that the utility of Gln in inflammatory diseases in which TNF-α plays a major role in their pathogenesis.

Molecular cloning and expression of glyceraldehyde-3-phosphate dehydrogenase gene under environmental stresses in sweetpotato

  • Kim, Young-Hwa;Song, Young-Sun;Huh, Gyung-Hye
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.95-100
    • /
    • 2008
  • Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a main enzyme in the glycolytic pathway, is involved in cellular energy production and regarded as a housekeeping gene. Previously, cytosolic GAPDH was selected as the most significantly abundant gene in EST library of sweetpotato suspension cells. In this study, a full-length of cDNA clone (IbGAPDH) encoding GAPDH was isolated from suspension-cultured cells of sweetpotato (Ipomoea babatas), and its expression was investigated with a view to understanding the physiological function of GAPDH in relation to environmental stresses. IbGAPDH encoded a 36.9 kDa polypeptide consisting of 337 amino acids. When the deduced amino acid of IbGAPDH was compared with other higher plants, IbGAPDH showed high homology with cytosolic GAPDH. The mRNA level of IbGAPDH significantly increased under environmental stresses, such as $H_2O_2$, MV and cold treatments. Among them, the transcript level of IbGAPDH gene was the highest under cold stress. Further investigation of the transcription level under $10^{\circ}C$ or $15^{\circ}C$ was performed with different tissues of sweetpotato. The transcription of IbGAPDH was increased by cold stress with tissue-specificity, moreover, showed different patterns according to temperature.