• Title/Summary/Keyword: cytosolic Ca$^{2+}$

Search Result 143, Processing Time 0.032 seconds

Mechanism of Acetylcholine-induced Endothelium-dependent Relaxation in the Rabbit Carotid Artery by M3-receptor Activation

  • Song, Yong-Jin;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.6
    • /
    • pp.313-317
    • /
    • 2004
  • The present study were designed to characterize the action mechanisms of acetylcholine (ACh)-induced endothelium-dependent relaxation in arteries precontracted with high $K^+$(70 mM). For this, we simultaneously measured both muscle tension and cytosolic free $Ca^{2+}$ concentration $([Ca^{2+}]_i)$, using fura-2, in endothelium-intact, rabbit carotid arterial strips. In the artery with endothelium, high $K^+$ increased both $[Ca^{2+}]_i$ and muscle tension whereas ACh $(10{\mu}M)$ significantly relaxed the muscle and increased $[Ca^{2+}]_i$. In the presence of $N^G$-nitro-L-arginine (L-NAME, 0.1 mM), ACh increased $[Ca^{2+}]_i$ without relaxing the muscle. In the artery without endothelium, high $K^+$ increased both $[Ca^{2+}]_i$ and muscle tension although ACh was ineffective. 4-DAMP (10 nM) or atropine $(0.1{\mu}M)$ abolished ACh-induced increase in $[Ca^{2+}]_i$ and relaxation. The increase of $[Ca^{2+}]_i$ and vasorelaxation by ACh was siginificantly reduced by either $3{\mu}M$ gadolinium, $10{\mu}M$ lanthanum, or by $10{\mu}M$ SKF 96365. These results suggest that in rabbit carotid artery, ACh-evoked relaxation of 70 mM $K^+$-induced contractions appears to be mediated by the release of NO. ACh-evoked vasorelaxation is mediated via the $M_3$ subtype, and activation of the $M_3$ subtype is suggested to stimulate nonselective cation channels, leading to increase of $[Ca^{2+}]_i$ in endothelial cells.

Presence of Rhodanese in the Cytosolic Fraction of the Fruit Bat (Eidolon helvum) Liver

  • Agboola, Femi Kayode;Okonji, Raphael Emuebie
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Rhodanese was isolated and purified from the cytosolic fraction of liver tissue homogenate of the fruit bat, Eidolon helvum, by using ammonium sulphate precipitation and CM-Sephadex C-50 ion exchange chromatography. The specific activity was increased 130-fold with a 53% recovery. The $K_m$ values for KCN and $Na_2S_2O_3$ as substrates were $13.5{\pm}2.2\;mM$ and $19.5{\pm}0.7\;mM$, respectively. The apparent molecular weight was estimated by gel filtration on a Sephadex G-100 column to be 36,000 Da. The optimal activity was found at a high pH (pH 9.0) and the temperature optimum was $35^{\circ}C$. An Arrhenius plot of the heat stability data consisted of two linear segments with a break occurring at $35^{\circ}C$. The apparent activation energy values from these slopes were 11.5 kcal/mol and 76.6 kcal/mol. Inhibition studies on the enzyme with a number of cations showed that $Mg^{2+}$, $Mn^{2+}$, $Ca^{2+}$, and $Co^{2+}$ did not affect the activity of the enzyme, but $Hg^{2+}$ and $Ba^{2+}$ inhibited the enzyme.

Multiple Actions of Dimethylsphingosine in 1321N1 Astrocytes

  • Lee, Yun-Kyung;Kim, Hyo-Lim;Kim, Yu-Lee;Im, Dong-Soon
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • N,N-dimethyl-D-erythro-sphingosine (DMS) is an N-methyl derivative of sphingosine and an inhibitor of protein kinase C (PKC) and sphingosine kinase (SK). In the present study, we examined the effects of DMS on intracellular $Ca^{2+}$ concentration, pH, and glutamate uptake in human 1321N1 astrocytes. DMS increased intracellular $Ca^{2+}$ concentration and cytosolic pH in a concentration-dependent manner. Pretreatment of the cells with the $G_{i/o}$ protein inhibitor PTX and the PLC inhibitor U73122 had no obvious effect. However, removal of extracellular $Ca^{2+}$ with the $Ca^{2+}$ chelator EGTA or depletion of intracellular $Ca^{2+}$ stores with thapsigargin impeded the DMS-induced increase of intracellular $Ca^{2+}$ concentration. Pretreatment of cells with $NH_4Cl$ or monensin reduced the DMS-induced $Ca^{2+}$ increase. However, inhibition of the DMS-induced $Ca^{2+}$ increase with BAPTA did not influence the DMS-induced pH increase. DMS also inhibited glutamate uptake by the 1321N1 astrocytes in a concentration-dependent manner. It also increased intracellular $Ca^{2+}$ and pH in PC12 neuronal cells. Our observations on the effects of DMS on 1321N1 astrocytes and PC12 neuronal cells point to a physiological role of DMS in the brain.

Involvement of Cytosolic Phospholipase $A_2$ in Nerve Growth Factor-Mediated Neurite Outgrowth of PC12 Cells

  • Choi, Soon-Wook;Yu, Eun-Ah;Lee, Young-Seek;Yoo, Young-Sook
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.525-530
    • /
    • 2000
  • The nerve growth factor (NGF) induces neuronal differentiation and neurite outgrowth of PC12 cells, whereas epidermal growth factors (EGF) stimulate growth and proliferation of the cells. In spite of this difference, NGF-or EGF-treated PC12 cells share various properties in cellular-signaling pathways. These include the activation of the phosphoinositide (PI)-3 kinase, 70 kDa S6 kinase, and in the mitogen-activated protein (MAP) kinase pathway, following the binding of these growth factors to intrinsic receptor tyrosine kinases (RTKs). Therefore, many studies have been attempted to access the critical signaling events in determining the differentiation and proliferation of PC12 cells. In this study, we investigated the cytosolic phospholipase $A_2$ ($cPLA_2$) in neurite behavior in order to identify the differences of signaling pathways between the NGF-induced differentiation and the EGF-induced proliferation of PC12 cells. We have showed here that the $cPLA_2$ was translocated from cytosol to membrane only in NGF-treated cells. We also demonstrated that this translocation is associated with NGF-induced activation of phospholipase $C-{\gamma}(PLC-{\gamma})$, which elevates intracellular $Ca^{2+}$ concentration. These results reveal that the translocation of $cPLA_2$ may be a requisite event in the neuronal differentiation of PC12 cells. Various phospholipase inhibitors were used to confirm the importance of these enzymes in the differentiation of PC12 cells. Neomycin B, a PLC inhibitor, dramatically inhibited the neurite outgrowth, and two distinct $PLA_2$ inhibitors, 4-bromophenacyl bromide (BPB) and arachidonyltrifluoro-methyl ketone ($AACOCF_3$) also suppressed the neurite outgrowth of the cells, as well Taken together, these data indicated that $cPLA_2$ is involved in NGF-induced neuronal differentiation and neurite outgrowth of PC12 cells.

  • PDF

Purification and Biochemical Characterization of Sucrose Synthase from the Cytosolic Fraction of Chickpea (Cicer arietinum L. cv. Amethyst) Nodules

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.12-18
    • /
    • 1999
  • Sucrose synthase (EC 2.4.1.13) has been purified from the plant cytosolic fraction of chickpea (Cicer arietinum L. cv. Amethyst) nodules. The native enzyme had a molecular mass of $356{\pm}15kD$. The subunit molecular mass was $87{\pm}2kD$, and a tetrameric structure is proposed for sucrose synthase of chickpea nodule. Optimum activities in the sucrose cleavage and synthesis directions were at pH 6.5 and 9.0, respectively. The purified enzyme displayed typical hyperbolic kinetics with substrates in cleavage and synthesis reactions. Chickpea nodules sucrose synthase had a high affinity for UDP ($K_m$, $8.0{\mu}M$) and relatively low affinities for ADP ($K_m$, 0.23 mM), CDP ($K_m$, 0.87 mM), and GDP ($K_m$, 1.51 mM). The $K_m$ for sucrose was 29.4 mM. In the synthesis reaction, UDP-glucose ($K_m$, $24.1{\mu}M$) was a more effective glucosyl donor than ADP-glucose ($K_m$, 2.7 mM), and the $K_m$ for fructose was 5.4 mM. Divalent cations, such as $Ca^{2+}$, $Mg^{2+}$, and $Mn^{2+}$, stimulated the enzyme activity in both the cleavage and synthesis directions, and the enzyme was very sensitive to inhibition by $HgCl_2$ and $CuSO_4$.

  • PDF

Modulation of L-type $Ca^{2+}$ Channel Currents by Various Protein Kinase Activators and Inhibitors in Rat Clonal Pituitary $GH_3$ Cell Line

  • Bae, Young-Min;Baek, Hye-Jung;Cho, Ha-Na;Earm, Yung-E;Ho, Won-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.139-146
    • /
    • 2001
  • L-type $Ca^{2+}$ channels play an important role in regulating cytosolic $Ca^{2+}$ and thereby regulating hormone secretions in neuroendocrine cells. Since hormone secretions are also regulated by various kinds of protein kinases, we investigated the role of some kinase activators and inhibitors in the regulation of the L-type $Ca^{2+}$ channel currents in rat pituitary $GH_3$ cells using the patch-clamp technique. Phorbol 12,13-dibutyrate (PDBu), a protein kinase C (PKC) activator, and vanadate, a protein tyrosine phosphatase (PTP) inhibitor, increased the $Ba^{2+}$ current through the L-type $Ca^{2+}$ channels. In contrast, bisindolylmaleimide I (BIM I), a PKC inhibitor, and genistein, a protein tyrosine kinase (PTK) inhibitor, suppressed the $Ba^{2+}$ currents. Forskolin, an adenylate cyclase activator, and isobutyl methylxanthine (IBMX), a non-specific phosphodiesterase inhibitor, reduced $Ba^{2+}$ currents. The above results show that the L-type $Ca^{2+}$ channels are activated by PKC and PTK, and inhibited by elevation of cyclic nucleotides such as cAMP. From these results, it is suggested that the regulation of hormone secretion by various kinase activity in $GH_3$ cells may be attributable, at least in part, to their effect on L-type $Ca^{2+}$ channels.

  • PDF

Functional roles of glutamic acid E143 and E705 residues in the N-terminus and transmembrane domain 7 of Anoctamin 1 in calcium and noxious heat sensing

  • Choi, Jonghyun;Jang, Yongwoo;Kim, Haedong;Wee, Jungwon;Cho, Sinyoung;Son, Woo Sung;Kim, Sung Min;Yang, Young Duk
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.236-241
    • /
    • 2018
  • Anoctamin 1 (ANO1) is an anion channel that is activated by changes in cytosolic $Ca^{2+}$ concentration and noxious heat. Although the critical roles of ANO1 have been elucidated in various cell types, the control of its gating mechanisms by $Ca^{2+}$ and heat remain more elusive. To investigate critical amino acid residues for modulation of $Ca^{2+}$ and heat sensing, we constructed a randomized mutant library for ANO1. Among 695 random mutants, reduced $Ca^{2+}$ sensitivity was observed in two mutants (mutant 84 and 87). Consequently, the E143A mutant showed reduced sensitivity to $Ca^{2+}$ but not to high temperatures, whereas the E705V mutant exhibited reduced sensitivity to both $Ca^{2+}$ and noxious heat. These results suggest that the glutamic acids (E) at 143 and 705 residues in ANO1 are critical for modulation of $Ca^{2+}$ and/or heat responses. Furthermore, these findings help to provide a better understanding of the $Ca^{2+}$-mediated activation and heat-sensing mechanism of ANO1.

The Change of Cytosolic Free Calcium Concentration Following Herpes Simplex Virus Type-1 (HSV-1) Infection (Herpes Simplex Virus Type-1 (HSV-1) 감염에 따른 세포내 유리 $Ca^{2+}$농도의 변화)

  • 남윤정;이규철;이찬희
    • Korean Journal of Microbiology
    • /
    • v.36 no.4
    • /
    • pp.306-311
    • /
    • 2000
  • Infection of Vero cells with herpes simplex virus type-1 (HSV-1) resulted in a series of changes in intra-cellular free calcium concentration $([Ca^{2+}]_i)$. A significant and maximal decrease $[Ca^{2+}]_i$ was observed at 4 hours postinfection (hr p.i.) in HSV-1-infected in Vero cells. Inactivation of HSV-1 with UV irradiation and heat treatment abolished HSV-1-induced decrease in $[Ca^{2+}]_i$ at 4 hr p.i. in Vero cells. And the degree of the decrease in $[Ca^{2+}]_i$ was dependent on the amount of input virus. Taxol, which stabilizes the polymerization of microtubule blocked HSV-1-induced decrease in $[Ca^{2+}]_i$ at 4 hr p.i., suggesting that microtubule may mediate the transport of HSV-1 nucleocapsid to the nucleus of infected cell. Treatment of HSV-1-infected Vero cells with metabolic inhibitors such as cycloheximide, cordycepin, or acyclovir partially reversed the decrease in $[Ca^{2+}]_i$ at 4 hr p.i.. Thus, it is suggested that HSV-1 induced decrease in $[Ca^{2+}]_i$ at 4 hr p.i. in Vero cells may play an important role in the multiplication of HSV-1.

  • PDF

Hydrogen peroxide attenuates refilling of intracellular calcium store in mouse pancreatic acinar cells

  • Yoon, Mi Na;Kim, Dong Kwan;Kim, Se Hoon;Park, Hyung Seo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.233-239
    • /
    • 2017
  • Intracellular calcium ($Ca^{2+}$) oscillation is an initial event in digestive enzyme secretion of pancreatic acinar cells. Reactive oxygen species are known to be associated with a variety of oxidative stress-induced cellular disorders including pancreatitis. In this study, we investigated the effect of hydrogen peroxide ($H_2O_2$) on intracellular $Ca^{2+}$ accumulation in mouse pancreatic acinar cells. Perfusion of $H_2O_2$ at $300{\mu}M$ resulted in additional elevation of intracellular $Ca^{2+}$ levels and termination of oscillatory $Ca^{2+}$ signals induced by carbamylcholine (CCh) in the presence of normal extracellular $Ca^{2+}$. Antioxidants, catalase or DTT, completely prevented $H_2O_2$-induced additional $Ca^{2+}$ increase and termination of $Ca^{2+}$ oscillation. In $Ca^{2+}$-free medium, $H_2O_2$ still enhanced CCh-induced intracellular $Ca^{2+}$ levels and thapsigargin (TG) mimicked $H_2O_2$-induced cytosolic $Ca^{2+}$ increase. Furthermore, $H_2O_2$-induced elevation of intracellular $Ca^{2+}$ levels was abolished under sarco/endoplasmic reticulum $Ca^{2+}$ ATPase-inactivated condition by TG pretreatment with CCh. $H_2O_2$ at $300{\mu}M$ failed to affect store-operated $Ca^{2+}$ entry or $Ca^{2+}$ extrusion through plasma membrane. Additionally, ruthenium red, a mitochondrial $Ca^{2+}$ uniporter blocker, failed to attenuate $H_2O_2$-induced intracellular $Ca^{2+}$ elevation. These results provide evidence that excessive generation of $H_2O_2$ in pathological conditions could accumulate intracellular $Ca^{2+}$ by attenuating refilling of internal $Ca^{2+}$ stores rather than by inhibiting $Ca^{2+}$ extrusion to extracellular fluid or enhancing $Ca^{2+}$ mobilization from extracellular medium in mouse pancreatic acinar cells.