• Title/Summary/Keyword: cytoprotective effect

Search Result 195, Processing Time 0.026 seconds

Induction of cytoprotective autophagy by morusin via AMP-activated protein kinase activation in human non-small cell lung cancer cells

  • Park, Hyun-Ji;Park, Shin-Hyung
    • Nutrition Research and Practice
    • /
    • v.14 no.5
    • /
    • pp.478-489
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Morusin, a marker component of Morus alba L., possesses anti-cancer activity. The objective of this study was to determine autophagy-inducing effect of morusin in non-small cell lung cancer (NSCLC) cells and investigate the underlying mechanism. SUBJECTS/METHODS: Autophagy induction and the expression of autophagy-related proteins were analyzed by LC3 immunofluorescence and western blot, respectively. The role of autophagy and AMP-activated protein kinase (AMPK) was determined by treating NSCLC cells with bafilomycin A1, an autophagy inhibitor, and compound C, an AMPK inhibitor. Cytotoxicity and apoptosis induction were determined by MTT assay, trypan blue exclusion assay, annexin V-propidium iodide (PI) double staining assay, and cell cycle analysis. RESULTS: Morusin increased the formation of LC3 puncta in the cytoplasm and upregulated the expression of autophagy-related 5 (Atg5), Atg12, beclin-1, and LC3II in NSCLC cells, demonstrating that morusin could induce autophagy. Treatment with bafilomycin A1 markedly reduced cell viability but increased proportions of sub-G1 phase cells and annexin V-positive cells in H460 cells. These results indicate that morusin can trigger autophagy in NSCLC cells as a defense mechanism against morusin-induced apoptosis. Furthermore, we found that AMPK and its downstream acetyl-CoA carboxylase (ACC) were phosphorylated, while mammalian target of rapamycin (mTOR) and its downstream p70S6 kinase (p70S6K) were dephosphorylated by morusin. Morusin-induced apoptosis was significantly increased by treatment with compound C in H460 cells. These results suggest that morusin-induced AMPK activation could protect NSCLC cells from apoptosis probably by inducing autophagy. CONCLUSIONS: Our findings suggest that combination treatment with morusin and autophagy inhibitor or AMPK inhibitor might enhance the clinical efficacy of morusin for NSCLC.

Protective effects of Scutellariae Radix on impairments in learning and memory induced by brain ischemia in rats (뇌허혈로 인한 흰쥐에서의 기억력 및 학습효과 저해에 대한 황금의 보호효과)

  • Kim, Young-Ock;Lee, Se-Na;Kim, Myung-Gyou;Boo, Yung-Min;Kim, Sun-Yeou;Kim, Ho-Cheol;Leem, Kang-Hyun
    • The Korea Journal of Herbology
    • /
    • v.21 no.4
    • /
    • pp.189-195
    • /
    • 2006
  • Objectives : It has been reported previously that the roots of Scutellaria baicalensis (known as Huang-Gum in Korean, henceforth referred to as S. baicalensis) could prevent neuronal cell death after global cerebral ischemia. In Genuine Korean medicine, S. baicalensis is known to relieve fever in upper body, and it was thus thought to be able to alleviate deteriorations in brain function. Methods : The protective effects of S. baicalensis against post-stroke memory retardation using 4-vessel occlusion model were examined in the present study. Results : S. baicalensis was shown to significantly alleviate the deficits in learning and memory by increasing the fraction of time spent in the quadrant in which the platform was initially placed ($34.9\;{\pm}\;3.2%$, p < 0.05) compared to that of the ischemia group ($28.0\;{\pm}\;2.5%$). The cytoprotective effect of S. baicalensis on CA1 hippocampal neurons was evaluated by measuring the neuronal cell density. Neuronal cell density in S. baicalensis extracts-treated ischemia group ($138.0\;{\pm}\;13.6\;cells/mm^2$) was significantly increased compared to saline-treated ischemia group ($22.1 \;{\pm}\;9.3\;cells/mm^2$, p < 0.05). In the study of OX-42 immunohistochemistry, S. baicalensis could decrease the micrgial activation in hippocampus after brain ischemia. Conclusion : These results may provide experimental support for the use of S. baicalensis in treating post-stroke memory impairment.

  • PDF

Heat shock protein 90β inhibits apoptosis of intestinal epithelial cells induced by hypoxia through stabilizing phosphorylated Akt

  • Zhang, Shuai;Sun, Yong;Yuan, Zhiqiang;Li, Ying;Li, Xiaolu;Gong, Zhenyu;Peng, Yizhi
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • Intestinal epithelial cell (IEC) apoptosis induced by hypoxia compromise intestinal epithelium barrier function. Both Akt and Hsp90 have cytoprotective function. However, the specific role of Akt and $Hsp90{\beta}$ in IEC apoptosis induced by hypoxia has not been explored. We confirmed that hypoxia-induced apoptosis was reduced by $Hsp90{\beta}$ overexpression but enhanced by decreasing $Hsp90{\beta}$ expression. $Hsp90{\beta}$ overexpression enhanced BAD phosphorylation and thus reduced mitochondrial release of cytochrome C. Reducing $Hsp90{\beta}$ expression had opposite effects. The protective effect of $Hsp90{\beta}$ against apoptosis was negated by LY294002, an Akt inhibitor. Further study showed that Akt phosphorylation was enhanced by $Hsp90{\beta}$, which was not due to the activation of upstream PI3K and PDK1 but because of stabilization of pAkt via direct interaction between $Hsp90{\beta}$ and pAkt. These results demonstrate that $Hsp90{\beta}$ may play a significant role in protecting IECs from hypoxia-induced apoptosis via stabilizing pAkt to phosphorylate BAD and reduce cytochrome C release.

Protective Activity Against Oxidative Stress of Plants Indigenous to Korea

  • Jung Myung Sun;Kang Kyoung Ah;Zhang Rui;Chae Sungwook;Yoo Byoung-Sam;Yang Young Taek;Lee Nam Ho;Park Jae Woo;Hyun Jin Won
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.279-284
    • /
    • 2005
  • We have screened the cytoprotective effect against $H_2O_2$ and $\gamma-ray$ radiation induced oxidative stress from 32 Korean plants. Betula ermani var.saitoana (caulis, leaves), Rosa wichuraiana (caulis), Sorbus commixta (caulis), Weigela florida (leaves), Cirsium rhinoceros (whole plant), and Viburnum erosum (caulis) were found to scavenge 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical and intracellular reactive oxygen species (ROS). As a result, extracts of six plants reduced cell death of Chinese hamster lung fibroblast (V79-4) cells induced by $H_2O_2$ treatment. In addition, these extracts protected cell death of V79-4 cells damaged by $\gamma-ray$ radiation. In addition, these extracts scavenged ROS generated by radiation. Taken together, the results suggest that Betula ermani var. saitoana, Rosa wichuraiana, Sorbus commixta, Weigela florida, Cirsium rhinoceros, and Vibumum erosum protect V79-4 cells against oxidative damage by radiation through scavenging ROS.

Identification of p54nrb and the 14-3-3 Protein HS1 as TNF-α-Inducible Genes Related to Cell Cycle Control and Apoptosis in Human Arterial Endothelial Cells

  • Stier, Sebastian;Totzke, Gudrun;Grunewald, Elisabeth;Neuhaus, Thomas;Fronhoffs, Stefan;Schoneborn, Silke;Vetter, Hans;Ko, Yon
    • BMB Reports
    • /
    • v.38 no.4
    • /
    • pp.447-456
    • /
    • 2005
  • TNF-$\alpha$ plays a pivotal role in inflammation processes which are mainly regulated by endothelial cells. While TNF-$\alpha$ induces apoptosis of several cell types like tumor cells, endothelial cells are resistant to TNFa mediated cell death. The cytotoxic effects of TNF-$\alpha$ on most cells are only evident if RNA or protein synthesis is inhibited, suggesting that de novo RNA or protein synthesis protect cells from TNF-$\alpha$ cytotoxicity, presumably by NF-${\kappa}B$ mediated induction of protective genes. However, the cytoprotective genes involved in NF-${\kappa}B$ dependent endothelial cell survival have not been sufficiently identified. In the present study, the suppression subtractive hybridization (SSH) method was employed to identify rarely transcribed TNF-$\alpha$ inducible genes in human arterial endothelial cells related to cell survival and cell cycle. The TNF-$\alpha$-induced expression of the RNA binding protein $p54^{nrb}$ and the 14-3-3 protein HS1 as shown here for the first time may contribute to the TNF-$\alpha$ mediated cell protection of endothelial cells. These genes have been shown to play pivotal roles in cell survival and cell cycle control in different experimental settings. The concerted expression of these genes together with other genes related to cell protection and cell cycle like DnaJ, $p21^{cip1}$ and the ubiquitin activating enzyme E1 demonstrates the identification of new genes in the context of TNF-$\alpha$ induced gene expression patterns mediating the prosurvival effect of TNF-$\alpha$ in endothelial cells.

Cytoprotective Effect of a Neutrase Enzymatic Hydrolysate Derived from Korea Pen Shell Atrina pectinata Against Hydrogen Peroxide -Induced Oxidative Damages in Hepatocytes (산화적 손상에 대한 키조개(Atrina pectinata) 효소 가수분해물의 간세포 보호 효과)

  • Han, Eui Jeong;Shin, Eun-Ji;Kim, Kee-Woong;Ahn, Ginnae;Bae, Tae Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.1
    • /
    • pp.123-131
    • /
    • 2020
  • In this study, we investigated the protective effects of a Neutrase enzymatic hydrolysate derived from Korea pen shell Atrina pectinata (APN) against hydrogen peroxide (H2O2)-induced oxidative damage in hepatocytes. First, we confirmed that APN has antioxidant activities by scavenging 2,2-azino-bis (3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) and H2O2 and increasing oxygen radical absorbance capacity (ORAC) value. Also, the treatment of APN increased the cell viability by reducing the intracellular reactive oxygen species (ROS) production in H2O2-stimulated hepatocytes. In addition, APN decreased the sub-G1 DNA contents and the apoptotic body formation increased by H2O2 stimulation. Moreover, APN modulated the protein expression of apoptosis related molecules (Bcl-2, Bax and p53) by suppressing the activation of nuclear factor NFkB and ERK/p38 signaling in H2O2-stimulated hepatocytes. Furthermore, APN led to the activation of Nrf2/HO-1signaling known as antioxidant systems. These results suggest APN protects hepatocytes against oxidative damages caused by H2O2 stimulation.

Cytoprotective and Antioxidative Effects of Crude Drug Preparation (E-kong-san) (이공산(異功散)의 세포보호 및 항산화 작용)

  • Lee, Kyung-Tae;Choi, Jung-Hye;Rho, Young-Soo;Ahn, Kyoo-Seok;Chang, Sung-Goo;Oh, Soo-Myung;Jung, Jee-Chang
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.3
    • /
    • pp.255-260
    • /
    • 1999
  • In the previous report, E-kong-san, which is usually used for recovering health in traditional medicine, has been shown to decrease cisplatin induced nephrotoxicity in vivo and in vitro. The significant reduction of E-kong-san on the cisplatin induced nephrotoxicity led us to investigate whether the effect of this water extract was a result of triggering antioxidation. In monkey kidney Vero cells, E-kong-san at $5{\sim}10\;mg/ml$ was able to attenuate 2mM cisplatin-stimulated cell death by 46.8% and 31.8%, respectively. E-kong-san showed strong free radical scavengering activities on 1,1-diphenyl-2-picrylhydrazil (DPPH) radical and xanthine/xanthine oxidase (XOD) generated superoxide anion radical $(O_2^{-.})$. We further studied the effects of E-kong-san on lipid peroxidation in rat liver microsomes induced by enzymatic and nonenzymatic methods. Moreover, E-kong-san exhibited significant inhibition on both ascorbic $acid/Fe^{2+}$ and $ADP/NADPH/Fe^{3+}$ induced lipid peroxidation in rat liver microsomes. Based on these results, we suggest that E-kong-san protects the cisplatin induced cytotoxicity by its antioxidative mechanism.

  • PDF

Protective Effects of Hyperoside from Juglans sinensis Leaves against 1-methyl-4-phenylpyridinium-Induced Neurotoxicity (1-methyl-4-phenylpyridinium으로 유도된 신경 손상에 대한 호두나무잎에서 분리된 Hyperoside의 보호 효과)

  • Pariyar, Ramesh;Svay, Thida;Seo, Jungwon
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.3
    • /
    • pp.231-239
    • /
    • 2018
  • Parkinson's disease (PD), one of common neurodegenerative diseases, is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. The loss of dopaminergic neurons in PD is associated with oxidative stress and mitochondrial dysfunction. Hyperoside (quercetin 3-O-${\beta}$-D-galactopyranoside) was reported to have protective properties against oxidative stress by reducing intracellular reactive oxygen species (ROS) and increasing antioxidant enzyme activity. In this study, we examined the neuroprotective effect of hyperoside against 1-methyl-4-phenyl pyridinium ($MPP^+$)-induced cell model of PD and the underlying molecular mechanisms. Hyperoside significantly decreased $MPP^+$-induced cell death, accompanied by a reduction in poly ADP-ribose polymerase (PARP) cleavage. Furthermore, it attenuated $MPP^+$-induced intracellular ROS and disruption of mitochondrial membrane potential (MMP), with the reduction of Bax/Bcl-2 ratio. Moreover, hyperoside significantly increased the phosphorylation of Akt, but it has no effects on $GSK3{\beta}$ and MAPKs. Pharmacological inhibitor of PI3K/Akt abolished the cytoprotective effects of hyperoside against $MPP^+$. Taken together, these results demonstrate that hyperoside significantly attenuates $MPP^+$-induced neurotoxicity through PI3K/Akt signaling pathways in SH-SY5Y cells. Our findings suggest that hyperoside might be one of the potential candidates for the treatment of PD.

Protective Effects of Sweet Orange, Unshiu Mikan, and Mini Tomato Juice Powders on t-BHP-Induced Oxidative Stress in HepG2 Cells

  • Jannat, Susoma;Ali, Md Yousof;Kim, Hyeung-Rak;Jung, Hyun Ah;Choi, Jae Sue
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.208-220
    • /
    • 2016
  • The aim of this study was to investigate the protective effects of juice powders from sweet orange [Citrus sinensis (L.) Osbeck], unshiu mikan (Citrus unshiu Marcow), and mini tomato (Solanum lycopersicum L.), and their major flavonoids, hesperidin, narirutin, and rutin in tert-butyl hydroperoxide (t-BHP)-induced oxidative stress in HepG2 cells. The increased reactive oxygen species and decreased glutathione levels observed in t-BHP-treated HepG2 cells were ameliorated by pretreatment with juice powders, indicating that the hepatoprotective effects of juice powders and their major flavonoids are mediated by induction of cellular defense against oxidative stress. Moreover, pretreatment with juice powders up-regulated phase-II genes such as heme oxygenase-1 (HO-1), thereby preventing cellular damage and the resultant increase in HO-1 expression. The high-performance liquid chromatography profiles of the juice powders confirmed that hesperidin, narirutin, and rutin were the key flavonoids present. Our results suggest that these fruit juice powders and their major flavonoids provide a significant cytoprotective effect against oxidative stress, which is most likely due to the flavonoid-related bioactive compounds present, leading to the normal redox status of cells. Therefore, these fruit juice powders could be advantageous as bioactive sources for the prevention of oxidative injury in hepatoma cells.

Protective Effects of Isorhamnetin against Hydrogen Peroxide-Induced Apoptosis in C2C12 Murine Myoblasts (C2C12 근아세포에서 산자나무 유래 Isorhamnetin의 산화적 스트레스에 의한 Apoptosis 유발 억제 효과)

  • Choi, Yung Hyun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.15 no.2
    • /
    • pp.93-103
    • /
    • 2015
  • Objectives: It was investigated the cytoprotective efficacies of isorhamnetin, a flavonoid originally derived from Hippophae rhamnoides L., against oxidative stress-induced apoptosis in C2C12 myoblasts. Methods: The effects of isorhamnetin on cell growth, apoptosis and reactive oxygen species (ROS) generation were evaluated by trypan blue dye exclusion assay, 4',6-diamidino-2-phenylindole staining and flow cytometry. The levels of apoptosis-regulatory and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway-related proteins, and caspase activities (caspase-3 and -9) were determined by Western blot analysis and colorimetric assay, respectively. Results: Our results revealed that treatment with isorhamnetin prior to hydrogen peroxide ($H_2O_2$) exposure significantly increased the C2C12 cell viability and, indicating that the exposure of C2C12 cells to isorhamnetin conferred a protective effect against oxidative stress. Isorhamnetin also effectively attenuated $H_2O_2$-induced apoptosis and ROS generation, which was associated with the restoration of the upregulation of Bax and downregulation of Bcl-2 induced by $H_2O_2$. In addition, $H_2O_2$ enhanced the activation of caspase-9 and -3, and degradation of poly (ADP-ribose)-polymerase, a typical substrate protein of activated caspase-3; however, these events were almost totally reversed by pretreatment with isorhamnetin. Moreover, isorhamnetin increased the levels of heme oxygenase-1, a potent antioxidant enzyme, associated with the induction of Nrf2. Conclusions: Our data indicated that isorhamnetin may potentially serve as an agent for the treatment and prevention of muscle disorders caused by oxidative stress.