• 제목/요약/키워드: cytoplasmic expression

검색결과 249건 처리시간 0.024초

가토 허혈-재관류 심근에서의 Bcl-2 단백의 발현 (Expression of Bcl-2 Protein in Ischemia-Reperfused Myocardium of Rabbit)

  • 류재욱;김삼현;서필원;박성식;최창휴;류경민;김영권;박이태;김성숙
    • Journal of Chest Surgery
    • /
    • 제31권10호
    • /
    • pp.924-927
    • /
    • 1998
  • 연구배경 : 심근의 허혈 또는 재관류에 의한 세포사에는 괴사 이외에 세포고사가 존재함이 알려져 있다. Bcl-2 단백은 세포질에 존재하는 단백으로 세포고사를 억제하는 기능을 하며 정상심근에서는 발현되지 않으나 심근경색의 급성기에서 발현됨이 보고되어 있다. 본 연구는 가토 허혈-재관류 심근에서 Bcl-2 단백의 발현 여부와 재관류의 시간에 따른 발현의 변화를 알아보고자 하였다. 방법: 평균 무게가 2.9Kg(1.5-4.8Kg)인 가토 39마리를 이용하였다. 허혈-재관류 모델의 각 실험동물에서 좌전하행지를 30분간 결찰한 다음 1, 4, 8, 12, 24시간, 3, 7일 동안 재관류시켰다. 이후 즉시 실험동물을 희생시킨 다음 심장을 적출하여 심근조직을 얻고 10% buffered formalin에 고정하였다. Bcl-2 단백의 발현은 파라핀에 포매된 조직에서 단일클론항체를 이용한 면역조직화학적 염색으로 확인하였다. 결과: 허혈-재관류 심근 중 12, 24시간, 3일 재관류군에서 Bcl-2 단백의 발현을 관찰할 수 있었으며, 특히 24시간 재관류 심근에서 잘 관찰되었다. Bcl-2 양성염색의 심근세포는 위험부위의 구제심근에서 관찰되었다. 결론: Bcl-2 단백은 심근의 허혈-재관류에서 급성기의 비교적 후기에 발현되며, 이는 재관류 초기에서 보다는 후기에서 세포고사를 억제하는데 일부 역할을 할 것으로 사료된다.

  • PDF

착상전 난자 자식작용의 특성규명 (Characterization of Embryo-specific Autophagy during Preimplantation)

  • 이재달
    • 한국산학기술학회논문지
    • /
    • 제12권8호
    • /
    • pp.3541-3546
    • /
    • 2011
  • 자식작용은 난자 세포질의 단백질 고분자 물질과 세포 소기관 분해를 위해서 세포질 리소좀 통로에 유전적으로 작용하고 있으며 ATP합성과 단백질 재활용에 관여하고 있다. 이러한 자식작용은 난자 발달 과정에서 매우 중요하지만 세포질 내 자식작용의 동적 발달 과정의 근원적인 기전은 잘 알려지지 않고 있다. 따라서 본 연구에서는 초기 난자 발달 과정의 자식작용을 이해하기 위해서 쥐 난자 체외 성숙 과정에서 자식작용과 관련된 유전자들의 유전적 발현 수준을 분석하였다. Real Time RT-PCR 기법을 이용하여 유전자 Atg2a, Atg3, Atg4b, Atg5, Atg6, Atg7, Atg9a, 그리고 Wipi3 같은 모계에서 유전된 ATGs 군들의 유전자들은 수정난 유전체 활성화(ZGA) 이전 단계인 1세포기에서 높게 발현되었고, 그 후 이들 유전자들의 발현은 배반포 단계와 2세포기 4세포기 단계에서는 감소함을 알 수 있었다. Dram과 Atg9b 유전자들은 배반포와 1세포기 단계에서 발현됨으로서 모계 유전자이면서 ZGA에 의해서 발현되는 유전자임을 알 수 있었다. 한편 UIKI의 유전자 발현은 착상 전 단계에서 일정하게 나타남을 알 수 있었다. 하지만 Atg4d 유전자의 경우 4세포기에서부터 배 반포 단계까지 높게 나타남을 알 수 있었다. 이러한 결과로부터 생쥐 난자 발달 과정에서 자식작용과 관련된 유전자들은 초기 난자 발달과정에서 중요한 역할 과정임을 알 수 있었다.

악성 성상세포종에서 표피성장인자 수용체 과발현의 임상적 의의 (Clinical Implications of the Epidermal Growth Factor Receptor Overexpression in the High-grade Astrocytomas)

  • 홍성언;강진오;이혜경;양문호;임언;조경삼
    • Radiation Oncology Journal
    • /
    • 제14권2호
    • /
    • pp.87-93
    • /
    • 1996
  • 목적 : 악성 성상세포종에서 표피 성장 인자 수용체의 과발현의 빈도와 예후 인자로서 가능성을 조사하기 위하여 본 연구를 시행하였다. 대상 및 방법 : 조직학적으로 악성 성상세포종으로 확진되고 방사선 치료를 받은 23명(역형성성상세포종 7예, 다형성 교아세포종 16예)의 파라핀 블록에 antihuman EGFR polyclonal antibody를 이용하여 면역염색을 시행하였다. 결과 : 표피 성장 인자 수용체는 역형성 성상세포종에서는 7예중 2예에서 양성이었고 다형성 교아세포종은 16예중 9예에서 양성으로 양군간의 발현 빈도의 차이는 통계적으로 유의하지 않았다 (p=0.44). 55세 미만의 환자는 11예중 3예에서 양성이었고 55세 이상은 12예중 8예에서 양성이었다(p=0.141). 표피 성장 인자 수용체 음성인 역형성 성상세포종 환자의 평균 생존기간(중앙값)은 37개월이었다. 다형성 교아세포종 환자의 평균 생존 기간은 표피 성장 인자 수용체 음성 군은 중앙값 11개월, 양성 군은 중앙값 7개월이었으나 두 군간의 통계적인 차이는 없었다(p=0.17). 결론 : 55세 이상 연령군에서 표피성장인자 수용체의 과발현의 빈도가 높았다. 다형성 교아세포종 환자의 생존율은 표피성장인자 수용체 과발현에 의하여 감소하였으나 유의한 영향을 받지 않았다.

  • PDF

쌍보환 추출물의 파골세포 분화 억제와 골 흡수 억제효과 (Inhibitory Effects of Ssangbohwan on Osteoclast Differentiation and Bone Resorption)

  • 김성중;이정주;김준현;조소현;박민철;조은희
    • Journal of Acupuncture Research
    • /
    • 제32권3호
    • /
    • pp.69-81
    • /
    • 2015
  • Purpose : The first purpose of this study is to find out whether the water extract of Rehmanniae Radix Preparat(RRP), Cuscutae Semen(CS) and their combination(Ssangbohwan, SBH) have the effect of suppressing Receptor activator of nuclear factor kappa-B ligand(RANKL)-induced osteoclast differentiation. The second purpose of this study is to find out whether the water extract of RRP, CS and SBH have the effect of inhibiting osteoporosis in an osteoporosis model induced by lipopolysaccharide(LPS). Methods : After promoting differentiation of osteoclasts by treating the RANKL, we observed the effect by the administration of RRP, CS and SBH. In addition, by means of Reverse transcription polymerase chain reaction(RT-PCR), we assayed mRNA expression levels of NFATc1, c-Fos, TRAP and GAPDHS(Glyceraldehyde-3-phosphate dehydrogenase, spermatogeni) from bone marrow macrophages(BMMs). Similarly, the protein expression levels of NFATc1 (Nuclear factor of activated T-cells, cytoplasmic1), C-Fos, MAPKs(Mitogen-activated protein kinases) and ${\beta}$-actin in cell lysates were analyzed by means of Western Blotting. Finally, we determined the anti-osteoporotic effects of RRP, CS and SBH, through the use of Lipopolysaccharide-induced bone-loss mouse. Results : RRP, CS and SBH showed remarkable inhibitive effect on RANKL-treated osteoclast differentiation without cytotoxicity. SBH inhibited the phosphorylation of p38, Jun N-terminal kinases(JNK), and I-${\kappa}B$ and down-regulated the induction of c-Fos and NFATc1 by RANKL. RRP, CS suppressed degradation of I-${\kappa}B$, but it did not affect c-Fos and NFATc1 by RANKL. Lastly, in vivo data showed that RRP and SBH prevented bone erosion by LPS treatment. Conclusions : These results demonstrate SBH can be effective remedy for bone-loss diseases such as osteoporosis.

Inhibitory Effects of Water Extracts of Eucommiae Cortex and Psoraleae Semen Alone and in Combination on Osteoclast Differentiation and Bone

  • Park, Jin Soo;Park, Ga Young;Choi, Han Gyul;Kim, Seong Joung;Kim, June Hyun;park, Min Cheol;Kim, Yun Kyung;Han, Sang Yong;Jo, Eun Heui
    • Journal of Acupuncture Research
    • /
    • 제34권2호
    • /
    • pp.1-18
    • /
    • 2017
  • Objectives : The purpose of this study was to evaluate the effects of water extracts of Eucommiae cortex (EC), Psoraleae semen (PS), and their combination on receptor activator of nuclear factor-kappa-B ligand (RANKL)-induced osteoclast differentiation. Methods : We assayed the protein expression levels of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), c-Fos, mitogen-activated protein kinases (MAPKs), and ${\beta}-actin$ in cell lysates using western blotting. Similarly, mRNA expression levels of NFATc1, c-Fos, tartrateresistant acid phosphate (TRAP), and glyceraldehyde-3-phosphate dehydrogenase, spermatogeni (GAPDHS) from bone marrow macrophages (BMMs) were analyzed using reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, we determined the anti-osteoporotic effects of the water extracts of EC, PS, and their combination in a lipopolysaccharide (LPS)-induced bone-loss mouse model. Results : The in vitro data revealed showed that the combination of EC and PS extract showed a more remarkable inhibition of osteoclast differentiation than each herb did alone. The combination downregulated the induction of c-Fos, NFATc1, and TRAP by suppressing the phosphorylation of p38 and c-Jun N-terminal kinases (JNKs) and inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$). Lastly, the in vivo data showed that PS reduced the LPS-induced bone erosion. Conclusion : The result of this study suggests that EC and PS could be potential therapeutic agents for bone loss diseases such as osteoporosis.

Dehydrocostus lactone inhibits NFATc1 via regulation of IKK, JNK, and Nrf2, thereby attenuating osteoclastogenesis

  • Lee, Hye In;Lee, Gong-Rak;Lee, Jiae;Kim, Narae;Kwon, Minjeong;Kim, Hyun Jin;Kim, Nam Young;Park, Jin Ha;Jeong, Woojin
    • BMB Reports
    • /
    • 제53권4호
    • /
    • pp.218-222
    • /
    • 2020
  • Excessive and hyperactive osteoclast activity causes bone diseases such as osteoporosis and periodontitis. Thus, the regulation of osteoclast differentiation has clinical implications. We recently reported that dehydrocostus lactone (DL) inhibits osteoclast differentiation by regulating a nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), but the underlying mechanism remains to be elucidated. Here we demonstrated that DL inhibits NFATc1 by regulating nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and nuclear factor-erythroid 2-related factor 2 (Nrf2). DL attenuated IκBα phosphorylation and p65 nuclear translocation as well as decreased the expression of NF-κB target genes and c-Fos. It also inhibited c-Jun N-terminal kinase (JNK) but not p38 or extracellular signal-regulated kinase. The reporter assay revealed that DL inhibits NF-κB and AP-1 activation. In addition, DL reduced reactive oxygen species either by scavenging them or by activating Nrf2. The DL inhibition of NFATc1 expression and osteoclast differentiation was less effective in Nrf2-deficient cells. Collectively, these results suggest that DL regulates NFATc1 by inhibiting NF-κB and AP-1 via down-regulation of IκB kinase and JNK as well as by activating Nrf2, and thereby attenuates osteoclast differentiation.

마늘유(diallyl disulfide)와 비타민 A(retinol acetate)가 카드뮴 투여 랫드에 미치는영향 (Effect of Garlic Oil (diallyl disulfide)/ Vitamin A( retinol acetate on Heat Shock Protein Induction in Cadmium Treated Rats.)

  • 김판기
    • 한국식품위생안전성학회지
    • /
    • 제13권2호
    • /
    • pp.171-187
    • /
    • 1998
  • Garlic occupies a special position among the many foods of vegetable origin because it is the sole food for Koreans during the their lives. And vitamin A has been ingested by forms of food or additives. Cadmium has been described as one of the most dangerous trace elements in the food and environment of man and livestocks. Since the de novo synthesis of stress proteins can be detected early after exposure to some agents, analysis of cadmium-induced changes in gene expression , ie. alterations in patterns of protein synthesis, may be useful to develop as biomarkers of exposure and damage for food hygiene. He acute and chronic combine effects of cadmium (Cd, CdCl2 20mg/kg), garlic oil(Dds: diallyl disulfide 50mg/kg, 3 times a week) and vitamin A(Ra: retinol acetate 50,000 IU/kg, 3 times a week) on Wistar male rats were evaluated concerning cadmium contents, tissues enzyme activity, HSP expression histopathological and electron microscopical examinations. The results of the study are as follows ; 1. Less cadmium was absorbed through the digestive tracts, but the ratio of contents in tissue were not changed by the simultaneous adminstration of diallyl disufide or retinol acetate. 2. ALT(alanine aminotransferase) , AST(aspartate aminotransferase), glucose, BUN (blood urea nitrogen), creatinine, the key indices of the clinical changes in hepatic and renal function were significantly hanged by the cadmium treatment after 1 week in liver, after 4 weeks in kidney. 3. Histopathological changes in cadmium treated rats were appeared at 8 weeks age treatment in kidneys. Homogenous eosinophilic material was accumulated in cortical and collecting tubular lumens at 16 weeks. Degenerated or necrotized tubular cells were observed in cortex and medulla. Degenerated seminiferous tubules and homogeneous eosinophilic material was seen in interstitial tissue of rat treated with cadmium for 16 weeks. Calcium deposits were seen in degenerated seminiferous tubules and the tubules showed severe calcification of rat treated with cadmium for 16 weeks. Electron microscope changes in kidney were observed in rats treated with CdCl2 20 mg/kg. Proximal convoluted tubule cells showed selling of cytoplasm and narrow lumen. Capillary endothelial cells showed cytoplasmic vacuoles and swelling. Degenerated epithelial cells were accumulated in tubular lumen of kidney. 4. Enhanced synthesis of 70 KDa relateve molecular mass proteins were detected in 2 hours after cadmium, exposure, with maximum activity occurring at 8~48 hours. Induction of HSP 70 was evident at proximal tubules and glomeruli in kidney. Testicular cells produced enough HSP to be detected normally. From the above results, it could be concluded that HSP70 induction by the cadmium treatment was a rapid reaction to indicated the exposure of xenobiotics, and retinol acetate reduced the cadmium induced nephrotoxicity.

  • PDF

Remifentanil Protects Human Keratinocyte Through Autophagic Expression

  • Kim, Eok Nyun;Park, Chang Hoon;Woo, Mi Na;Yoon, Ji Young;Park, Bong Soo;Kim, Yong Ho;Kim, Cheul Hong
    • 대한치과마취과학회지
    • /
    • 제14권2호
    • /
    • pp.101-106
    • /
    • 2014
  • Background: Remifentanil, an ultra-short-acting mu-opioid receptor agonist, is unique from other opioids because of its esterase-based metabolism, minimal accumulation, and very rapid onset and offset of clinical action. Remifentanil can prevent the inflammatory response and can suppress inducible nitric oxide synthase expression in a septic mouse model. However, the effects of remifentanil on human keratinocyte and autophagy have yet to be fully elucidated during hypoxia-reoxygenation. Here we investigated whether remifentanil confers protective effect against hypoxia-reoxygenation in human keratinocyte and, if so, whether autophagy mediates this effect. Methods: The human keratinocytes were cultured under 1% oxygen tension. The cells were gassed with 94% $N_2$, and 5% $CO_2$ and incubated for 24 h at $37^{\circ}C$. To determine whether the administration of affects human keratinocytes hypoxia-reoxygenation injury, cells were then exposed to various concentrations of remifentanil (0.01, 0.1, 0.5 and 1 ng/ml) for 2 h. After remifentanil treatment, to simulate reoxygenation and recovery, the cells were reoxygenated for 12 h at $37^{\circ}C$. Control group did not receive remifentanil treatment. Normoxia group did not receive hypoxia and remifentanil treatment for 36 h. 3-MA group was treated 3-methyladenine (3-MA) for 1h before remifentanil treatment. Cell viability was measured using a quantitative colorimetric assay with MTT, showing the mitochondrial activity of living cells. Cells were stained with fluorescence and analyzed with Western blot analysis to find out any relations with activation of autophagy. Results: Prominent accumulation of autophagic specific staining MDC was observed around the nuclei in RPT group HaCaT cells. Similarly, AO staining, red fluorescent spots appeared in RPT group HaCaT cells, while the Normoxia, control and 3-MA groups showed mainly green cytoplasmic fluorescence. We here examined activation of autophagy related protein under H/R-induced cells by Western blotting analysis. Atg5, Beclin-1, LC3-II (microtubule-associated protein 1 light chain 3 form II) and p62 was elevated in RPT group cells. But they were decreased when autophagy was suppressed by 3-MA (Fig. 5). Conclusions: Although the findings of this study are limited to an in vitro interpretation, we suggest that remifentanil may have a beneficial effect in the recovery of wound from hypoxia-reoxygenation injury.

Detrimental effects of lipopolysaccharides on maturation of bovine oocytes

  • Zhao, Shanjiang;Pang, Yunwei;Zhao, Xueming;Du, Weihua;Hao, Haisheng;Zhu, Huabin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1112-1121
    • /
    • 2019
  • Objective: Gram-negative bacteria lipopolysaccharide (LPS) has been reported to be associated with uterine impairment, embryonic resorption, ovarian dysfunction, and follicle retardation. Here, we aimed to investigate the toxic effects of LPS on the maturation ability and parthenogenetic developmental competence of bovine oocytes. Methods: First, we developed an in vitro model to study the response of bovine cumulusoocyte complexes (COCs) to LPS stress. After incubating germinal vesicle COCs in $10{\mu}g/mL$ of LPS, we analyzed the following three aspects: the expression levels of the LPS receptor toll-like receptor 4 (TLR4) in COCs, activities of intracellular signaling protein p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-${\kappa}B$); and the concentrations of interleukin (IL)-$1{\beta}$, tumor necrosis factor (TNF)-${\alpha}$, and IL-6. Furthermore, we determined the effects of LPS on the maturation ability and parthenogenetic developmental competence of bovine oocytes. Results: The results revealed that LPS treatment significantly elevated TLR4 mRNA and protein expression levels in COCs. Exposure of COCs to LPS also resulted in a marked increase in activity of the intracellular signaling protein p-p38 MAPK and NF-${\kappa}B$. Furthermore, oocytes cultured in maturation medium containing LPS had significantly higher concentrations of the proinflammatory cytokines IL-$1{\beta}$, TNF-${\alpha}$, and IL-6. LPS exposure significantly decreased the first polar body extrusion rate. The cytoplasmic maturation, characterized by polar body extrusion and distribution of peripheral cortical granules, was significantly impaired in LPS-treated oocytes. Moreover, LPS exposure significantly increased intracellular reactive oxygen species levels and the relative mRNA abundance of the antioxidants thioredoxin (Trx), Trx2, and peroxiredoxin 1 in oocytes. Moreover, the early apoptotic rate and the release of cytochrome C were significantly increased in response to LPS. The cleavage, morula, and blastocyst formation rates were significantly lower in parthenogenetically activated oocytes exposed to LPS, while the incidence of apoptotic nuclei in blastocysts was significantly increased. Conclusion: Together, these results provide an underlying mechanism by which LPS impairs maturation potential in bovine oocytes.

The estrogen-related receptor γ modulator, GSK5182, inhibits osteoclast differentiation and accelerates osteoclast apoptosis

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • BMB Reports
    • /
    • 제54권5호
    • /
    • pp.266-271
    • /
    • 2021
  • Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of cFos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption.