• 제목/요약/키워드: cytokine regulation

검색결과 337건 처리시간 0.023초

RBL-2H3세포에서 생지황약침액의 FcεRI 신호전달을 통한 β-hexosaminidase분비와 Cytokine생성 억제 효과 (Inhibitory Effect of Rehmannia Glutinosa Pharmacopuncture Solution on β-hexosaminidase Release and Cytokine Production via FcεRI signaling in RBL-2H3 Cells)

  • Kang, Kyung-Hwa;Kim, Cheol-Hong
    • 대한약침학회지
    • /
    • 제14권2호
    • /
    • pp.15-24
    • /
    • 2011
  • Background: Type I allergy is involved in allergic asthma, allergic rhinitis, and atopic dermatitis which are accompanied by an acute and chronic allergic inflammatory responses. Rehmannia glutinosa is a traditional medicine in the East Asian region. This study examined whether a Rehmannia Glutinosa pharmacopuncture solution (RGPS) had anti-allergic or anti-inflammatory effects in antigen-stimulated-RBL-2H3 cells. Methods: We determined the effect of RGPS on cell viability using the 3-[4,5-dimethylthiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay. We also examined the effect of RGPS on the release of ${\beta}$-hexosaminidase and the secretion of IL-4 and TNF-${\alpha}$ using ELISA. In addition, we evaluated the effect of RGPS on the mRNA expression of various cytokines; IL-2, IL-3, IL-4, IL-5, IL-13 and TNF-${\alpha}$ using RT-PCR. Furthermore, we assessed the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-${\kappa}$B using Western blotting after RGPS treatment. Results: We found that RGPS ($10^{-4}$ to $10^{-1}$ dilution) did not cause any cytotoxicity. We observed significant inhibition of ${\beta}$-hexosaminidase release and suppression of the protein secretion of IL-4 and TNF-${\alpha}$ and mRNA expression of multiple cytokines in antigen-stimulated-RBL-2H3 cells after RGPS treatment. Additionally, RGPS suppressed not only the phosphorylation of MAPKs, but also the transcriptional activation of NF-${\kappa}$B in antigen-stimulated-RBL-2H3 cells. Conclusions: These results suggest that RGPS inhibits degranulation and expression of cytokines including IL-4 and TNF-${\alpha}$ via down-regulation of MAPKs and NF-${\kappa}$B activation in antigen-stimulated-RBL-2H3 cells. In conclusion, RGPS may have beneficial effects in the exerting anti-allergic or anti-inflammatory activities.

Effect of Cordycepin Purified from Cordyceps militaris on Th1 and Th2 Cytokines in Mouse Splenocytes

  • Jeong, Min-Ho;Seo, Min Jeong;Park, Jeong Uck;Kang, Byoung Won;Kim, Kyoung-Sook;Lee, Jae Yun;Kim, Gi-Young;Kim, Jung-In;Choi, Yung Hyun;Kim, Kwang Hyuk;Jeong, Yong Kee
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권8호
    • /
    • pp.1161-1164
    • /
    • 2012
  • Cordycepin was purified from a mushroom, Cordyceps militaris, and its effect on Th1 and Th2 cytokines was examined. The level of cytokine induction in mouse splenocytes was estimated after co-inoculation of purified cordycepin and LPS. When $5{\mu}g/ml$ of purified cordycepin was exposed to mouse splenocytes for 72 h, the level of a Th1 cytokine IL-12 increased by 2.9-fold. The addition of the purified cordycepin to splenocytes also increased the level of Th2 cytokines, IL-4 and IL-10, by 1.9- and 1.8-fold, respectively. Therefore, cordycepin increases the cytokine levels and may contribute to the up-regulation of cellular and humoral immunity.

대식세포주에서 베타-글루칸에 의한 염증성 사이토카인의 발현 (Expression of Inflammatory Cytokines by Beta-glucan in Macrophage Cell Line)

  • 김미정;유한욱;조계형;김하원
    • 약학회지
    • /
    • 제52권1호
    • /
    • pp.73-78
    • /
    • 2008
  • Immune system can protect host attacking from a variety of microorganism and virus through innate and adaptive immunities. The innate immune system can be activated by recognition of conserved carbohydrates on the cell surface of pathogen resulting in protection, immunity regulation and inflammation. Immunostimulating and anti-tumor ${\beta}$-glucan, major cell wall component of many fungi, could be recognized as pathogen associated molecular pattern (PAMP) by C-type lectin such as pathogen recognition receptor (PRR) of host innate immunity cells. In spite of many studies of basidiomycetes ${\beta}$-glucan on immunostimulation, little is known about the precise mechanism as molecular-level. Among C-type lectins, dectin-1 was cloned and reported as a ${\beta}$-glucan receptor. In this report, we demonstrated induction of cytokine gene transcription by Ganoderma lucidum ${\beta}$-glucan in the absence or presence of lipopolysaccharide (LPS) by RT-PCR analysis. The expression of murine dectin-1 (MD-1) on RAW264.7 macrophage by RT-PCR showing both the full length, 757 bp $(MD-1{\alpha})$ and alternative spliced form, 620 bp $(MD-1{\beta})$. Both $MD-1{\alpha}$ and $MD-1{\beta}$ mRNAs were induced by ${\beta $-glucan both in the absence and presence of LPS. To explore expression of inflammatory cytokines by ${\beta}$-glucan, RAW264.7 cells were treated with ${\beta}$-glucan for 12 hours. As a result, the expressions of IL-1 IL-6, IL-l0 and $TNF-{\alpha}$ were increased by ${\beta}$-glucan treatment in a dose-dependent fashion. From these results, ${\beta}$-glucan induced transcriptions of dectin-1 and immune activating cytokine genes, indicating induction of immune allertness by expressing dectin-1 and secreting inflammatory cytokines.

황화패장, 백화패장의 항천식 작용의 비교연구 (Comparitive study on anti-asthmatic activities of Patrinia scabiosaefolia Fischer ex Link and Patrinia villosa Jussieu in a mouse model of asthma)

  • 차종태;이장천;이영철
    • 대한본초학회지
    • /
    • 제27권3호
    • /
    • pp.75-82
    • /
    • 2012
  • Objective : In the present study, we investigated the pharmacological profile of the aqueous extract of $Patrinia$ $scabiosaefolia$ Fischer ex Link (EPS) and $Patrinia$ $villosa$ Jussieu (EPV) for its anti-asthmatic activities. The purpose of this study is to ascertain if EPS result in better anti-asthmatic activities and functional outcome as compared with EPV. Methods : In this study, BALB/c mice were systemically sensitized to ovalbumin (OVA) followed intratracheally, intraperitoneally, and by aerosol allergen challenges. We investigated the effect of EPS, EPV on the recruitment of pulmonary inflammatory cells, various immune cell phenotypes, Th1/Th2 cytokine gene expression and production and histamine production in serum. Results : In BALB/c mice, we found that EPV-treated groups had more effectively suppressed inflammatory cell infiltration of lung and BALF, B220+IgE+, CD11b+Gr-1+ cell population in lung and these occurred by suppressing the gene expression of IL-4, IL-5 and IL-4 cytokine production in BALF and serum. Conclusions : These results suggest that EPV may play an important role in the control of anti-asthmatic activities by down-regulation of Th2 cytokine (especially IL-4, IL-5). In general, EPV has shown a better anti-asthmatic activities compared to EPS.

Cross-talk between STAT6 and Ras/MAPK Pathway for the IL-4-mediated T Cell Survival

  • So, Eui-Young;Jang, Ji-Young;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.578-583
    • /
    • 2001
  • As a prototypic Thl vs Th2 cytokine, IFN-$\gamma$ and IL-4 activate distinct STAT proteins, STAT1 and STATE, respectively. In cytokine-producing Jurkat T cells, IL-4 is effectively rescued from cell death that is induced by dexamethasone, but IFN-$\gamma$ failed to do so. Since the Ras/MAPK pathway is known to play an important role in cytokine-induced cell survival, we investigated the mechanism of T cell survival through the analysis of functional cross-talk between Ras/MAPK and distinct STAT proteins that are activated by IL-4 and IFN-$\gamma$. Although IL-4 and IFN-$\gamma$ each induced the activation of STATE and STATI. in Jurkat T cells, respectively, only IL-4 was capable of inducing MAPK. Along with tyrosine kinase inhibitors, MEK/MAPK inhibitors also caused a significant suppression of the IL-4-induced STATE activity. This suggests a positive regulation of STATE by MAPK during IL-4 signal transduction. Furthermore, transfection studies with dominant active (da) vs dominant negative (dn) Ras revealed that daRas, but not dnRas, selectively up-regulated the expression and activity of STATE with a concomitant increase in MAPK activity. These results, therefore, suggest that there is a functional cross-talk between the Ras/MAPK and Jak/STAT6 pathways, which may have a role in the IL-4-induced T cell survival.

  • PDF

Anti-fatigue effect of fermented porcine placenta through the regulation of fatigue-associated inflammatory cytokines

  • Nam, Sun-Young;Go, Ji-Hyun;Lee, Mikyung;Kim, Jongbae;Jeong, Hyein;Lee, Won Kyung
    • 셀메드
    • /
    • 제6권2호
    • /
    • pp.13.1-13.7
    • /
    • 2016
  • Fatigue is a common complaint and affects the quality of life in modern people. Physical stress may induce activation of certain immune cells. Fermented porcine placenta (FPP) has been used to alleviate fatigue. Inflammatory cytokines are produced by physical stress and results in symptoms of fatigue. However, the role of FPP on fatigue-associated inflammatory cytokine production has not been elucidated yet. Thus, we estimated the anti-fatigue effect of FPP and its active components, leucine (Leu) and lysine (Lys) in activated RAW264.7 macrophages and forced swimming test (FST) fatigue animal model. Pretreatment with FPP, Leu, or Lys significantly inhibited the lipopolysaccharide (LPS)-induced tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 production without inducing cytotoxicity on LPS-stimulated RAW264.7 macrophages. FPP, Leu, or Lys inhibited the production of nitric oxide and downregulated the expression of inducible nitric oxide synthase on LPS-stimulated RAW264.7 macrophages. Furthermore, caspase-1 activities increased by LPS were significantly reduced by FPP, Leu, or Lys. In the FST, inflammatory cytokine levels of the mice administrated with FPP, Lys, and Leu were significantly reduced compared with the control group at 21 days. Collectively, these results show that anti-fatigue effect of FPP and its active components, Leu and Lys might be derived from the down-regulating of inflammatory mediators.

Regulation of Inflammatory Cytokine Production by Bee Venom in Rat Chondrocytes

  • Kim, Eun-Jung;Kim, Gye-Yeop
    • 동의생리병리학회지
    • /
    • 제25권1호
    • /
    • pp.132-137
    • /
    • 2011
  • Bee venom acupuncture (BVA), as a kind of herbal acupuncture, involved injecting diluted bee venom into acupoints and is used for pain, osteoarthritis and rheumatoid arthritis patients. BVA is growing in popularity, especially in Korea, and is used primarily for pain relief in many kinds of diseases. However, the effect of bee venom anti-inflammatory related action in lipopolysaccharide (LPS) induced chondrocyte stress have not been reported yet. The aim of this study was to investigate the effect of bee venom of cell viability and inflammatory cytokine in rat articular chondrocyte cultures stimulated with lipopolysaccharide. Inflammation was induced in rat chondrocytes by treatment with $10{\mu}g/m{\ell}$ LPS. The change of cell viability were decreased in chondrocytes after treatment with lipopolysaccharide. The cell viability revealed that BV exerted no significant cytotoxicity in the rat chondrocyte. Bee venom inhibited decreased cell viability in the presence of lipopolysaccharide ($10{\mu}g/m{\ell}$) in a dose dependent manner(0.1, 0.5, 1.0 and $5.0{\mu}g/m{\ell}$) at bee venom(p<0.05). Tumor necrosis factor (TNF)-${\alpha}$ production in the presence of lipopolysaccharide($1{\mu}g/m{\ell}$) was also inhibited in a dose dependent manner (p<0.05 from bee venom $0.1{\mu}g/m{\ell}$). Interleukin (IL)-6 production in the presence of lipopolysaccharide ($10{\mu}g/m{\ell}$) was inhibited as well (p<0.05 at bee venom 0.1, 0.5, 1.0 and $5.0{\mu}g/m{\ell}$, respectively). Our results demonstrate that bee venom was a anti-inflammatory agent of chondrocytes. Bee venom may exert its anti inflammatory effects through inhibition of TNF-${\alpha}$ and IL-6 synthesis, and may then pain relief and reduce the articular destruction.

Bordetella bronchiseptica bateriophage suppresses B. bronchiseptica-induced inflammation in swine nasal turbinate cells

  • Park, Ga Young;Lee, Hye Min;Yu, Hyun Jin;Son, Jee Soo;Park, Sang Joon;Song, Kyoung Seob
    • Genes and Genomics
    • /
    • 제40권12호
    • /
    • pp.1383-1388
    • /
    • 2018
  • The development of therapeutic bacteriophages will provide several benefits based on an understanding the basic physiological dynamics of phage and bacteria interactions for therapeutic use in light of the results of antibiotic abuse. However, studies on bacteriophage therapeutics against microbes are very limited, because of lack of phage stability and an incomplete understanding of the physiological intracellular mechanisms of phage. The major objective of this investigation was to provide opportunity for development of a novel therapeutic treatment to control respiratory diseases in swine. The cytokine array system was used to identify the secreted cytokines/chemokines after Bordetella bronchiseptica infection into swine nasal turbinate cells (PT-K75). We also performed the real-time quantitative PCR method to investigate the gene expression regulated by B. bronchiseptica infection or bacteriophage treatment. We found that B. bronchiseptica infection of PT-K75 induces secretion of many cytokines/chemokines to regulate airway inflammation. Of them, secretion and expression of IL-$1{\beta}$ and IL-6 are increased in a dose-dependent manner. Interestingly, membrane-bound mucin production via expression of the Muc1 gene is increased in B. bronchiseptica-infected PT-K75 cells. However, cytokine production and Muc1 gene expression are dramatically inhibited by treatment with a specific B. bronchiseptica bacteriophage (Bor-BRP-1). The regulation of cytokine profiles in B. bronchiseptica-induced inflammation by B. bronchiseptica bacteriophage is essential for avoiding inappropriate inflammatory responses. The ability of bacteriophages to downregulate the immune response by inhibiting bacterial infection emphasizes the possibility of bacteriophage-based therapies as a novel anti-inflammatory therapeutic strategy in swine respiratory tracts.

Murine macrophage RAW264.7에서 과산화수소가 유발형 산화질소 합성효소의 발현에 미치는 영향 (The Effect of Hydrogen Peroxide on Inducible Nitric Oxide Synthase Expression in Murine Macrophage RA W264.7 Cells)

  • 안중현;송정섭
    • Tuberculosis and Respiratory Diseases
    • /
    • 제47권2호
    • /
    • pp.172-183
    • /
    • 1999
  • 연구배경: 산화질소(${\cdot}NO$)는 여러 세포에서 산화질소 합성효소(NOS)에 의해서 생산되며 다양한 병태생리과정에 관여한다. 여러 cytokine들이 iNOS의 발현을 촉진시키고 산화질소 생산을 증가시킴으로써 염증반응을 증폭시키고 세포와 조직손상을 초래한다고 알려진 바, 과산화수소($H_2O_2$)가 세포내 NOS의 발현과 산화질소형성에 미치는 영향을 알아보고자 하였다. 방법: 마우스 대식세포주 RAW264.7에 여러 가지 cytokine과 세균 내독소 (LPS)로 자극을 준 세포군 이에 더하여 $H_2O_2$, NOS 억제제 (L-NAME) 및 항산화제 (catalase)등을 사용하여 세포를 자극한 후 생성된 산화질소 산화물의 농도를 측정하고 Northern analysis로 iNOS mRNA의 발현정도를 보아 다음과 같은 성적을 얻었다. 결과: Cytokine과 LPS 자극군에서 대조군보다 ${\cdot}NO$ 생산이 높았고, 이 자극군에 $H_2O_2$를 추가로 자극하였을 때 ${\cdot}NO$생산이 2 배 이상 유의하게 높았다. Cytokine 자극군에서 $H_2O_2$의 자극 농도에 따른 ${\cdot}NO$생산은 $H_2O_2$의 농도가 증가할수록 유의하게 증가하였다. LPS와 IFN-$\gamma$ 자극군에서 L-NAME을 같이 자극시에 ${\cdot}NO$의 양은 L-NAME의 농도증가에 따라 유의하게 감소하였고, Cytokine 및 $H_2O_2$자극군에서도 추가로 자극한 L-NAME 의 농도증가에 따라 ${\cdot}NO$의 양은 유의하게 감소하였다. Cytokine과 $H_2O_2$ 자극균에 catalase를 같이 자극 하였을 때 ${\cdot}NO$의 양은 유의하게 감소했고, Mercaptoethanol과 phenanthroline을 전처치하고 LPS와 IFN-$\gamma$$H_2O_2$로 자극한 군에서 이들의 전처치한 농도가 높을수록 ${\cdot}NO$의 양은 유의하게 Cytokine자극군과 IFN-$\gamma$, LPS 자극군에 $H_2O_2$를 추가 자극 후 Northern analysis 결과 $H_2O_2$는 iNOS mRNA 발현을 현저히 증가시켰다. 결론: 이상의 결과로 과산화수소가 cytokine과 내독소 등으로 자극된 마우스 대식세포에서 산화질소생산에 유의한 증폭효과를 나타냈고, iNOS mRNA 의 발현도 증가시켰음을 확인할 수 있었다.

  • PDF

SOCS1 counteracts ROS-mediated survival signals and promotes apoptosis by modulating cell cycle to increase radiosensitivity of colorectal cancer cells

  • Ryu, Ji-Yoon;Oh, Jiyoung;Kim, Su-Min;Kim, Won-Gi;Jeong, Hana;Ahn, Shin-Ae;Kim, Seol-Hee;Jang, Ji-Young;Yoo, Byong Chul;Kim, Chul Woo;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제55권4호
    • /
    • pp.198-203
    • /
    • 2022
  • As negative regulators of cytokine signaling pathways, suppressors of cytokine signaling (SOCS) proteins have been reported to possess both pro-tumor and anti-tumor functions. Our recent studies have demonstrated suppressive effects of SOCS1 on epithelial to mesenchymal signaling in colorectal cancer cells in response to fractionated ionizing radiation or oxidative stress. The objective of the present study was to determine the radiosensitizing action of SOCS1 as an anti-tumor mechanism in colorectal cancer cell model. In HCT116 cells exposed to ionizing radiation, SOCS1 over-expression shifted cell cycle arrest from G2/M to G1 and promoted radiation-induced apoptosis in a p53-dependent manner with down-regulation of cyclin B and up-regulation of p21. On the other hand, SOCS1 knock-down resulted in a reduced apoptosis with a decrease in G1 arrest. The regulatory action of SOCS1 on the radiation response was mediated by inhibition of radiation-induced Jak3/STAT3 and Erk activities, thereby blocking G1 to S transition. Radiation-induced early ROS signal was responsible for the activation of Jak3/Erk/STAT3 that led to cell survival response. Our data collectively indicate that SOCS1 can promote radiosensitivity of colorectal cancer cells by counteracting ROS-mediated survival signal, thereby blocking cell cycle progression from G1 to S. The resulting increase in G1 arrest with p53 activation then contributes to the promotion of apoptotic response upon radiation. Thus, induction of SOCS1 expression may increase therapeutic efficacy of radiation in tumors with low SOCS1 levels.