• Title/Summary/Keyword: cypermethrin

Search Result 111, Processing Time 0.024 seconds

Joint Toxic Action of Insecticide Mixtures to the Cupermethrin-and Pirimicarb-Selected Strains of Green Peach Aphid(Myzus pericae Sulzer) (Cypermethrin과 Pirimicarb 저항성계통 복숭아혹잔딧물에 대한 살충제문의 연합독작용)

  • 안용준;김길하;최승윤
    • Korean journal of applied entomology
    • /
    • v.28 no.1
    • /
    • pp.32-36
    • /
    • 1989
  • The joint toxic action of mixtures of cypermethrin or pirimicarb with one of other insecticides (acephate, cypermethrin, demeton-S-methyl and pirimicarb) on the cypermethrin or picimicarb-selected green peach aphid (Myzus persicae Sulzer)was investigated. The responses depended on the choice and ratios of insecticide combination. In the cypermethrin-selected strain bioas-say, mixtures of test insecticides showed no synergistic effect. On the other hand, the maxi-mum synergistic effects for the pirimicarb-selected strain were obtained at the 8 : 2 ratio of pirimicarb and demeton-S-methyl exhibited antagonistic effect.

  • PDF

Studies of the Insecticide Resistance in the Green Peach Aphid, Myzus persicae Sulzer (V). Development of Cypermethrin and Pirimicarb Resistance, and Cross Resistance (복숭아혹진딧물의 살충제 저항성에 관한 연구 (V). Cypermethrin과 Pirimicarb에 의한 저항성 발달과 교류저항성)

  • 최승윤;김길하;안용준
    • Korean journal of applied entomology
    • /
    • v.28 no.1
    • /
    • pp.23-27
    • /
    • 1989
  • The green peach aphid(Myzus pericae Sulzer) was selected over 20 generations with cypermethrin and pirmicarb, respectively. The resulting resistant strains were tested to inverting-ate the development of insecticide resistance and cross-resistance to some insecticides in the laboratory. The development of insecticide resistance against green peach aphid at the 20th selected generation was greatly varied with the insecticides: 20.5 fold for cypermethrin and 3.2 fold for pirimicarb compared with the parent strain. The cypermethrin selected strain exhibited cross resistance to acephate and pirimicarb, and pirimicarb selected strain to acephate and cypermethrin, respectively. Demeton-S-methyl, however, has not been shown cross-resistance by the selected strains.

  • PDF

Study on Residual Properties and Risk Assessment of α-Cypermethrin and Deltamethrin in the Chives (Allium tuberosum R.) and Spring onion (Allium wakegi Araki) (시설재배 부추(Allium tuberosum R.)와 쪽파(Allium wakegi Araki) 중 α-Cypermethrin과 Deltamethrin의 잔류특성 및 안전성 평가)

  • Jo, Yeong Ju;Choi, Jeong Yoon;Ham, Hun Ju;Hur, Jang Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • BACKGROUND: This study was conducted to evaluate the residual characteristics and safety assessment of αcypermethrin and deltamethrin in minor crops, chives and spring onion cultivated in greenhouse. METHODS AND RESULTS: The insecticides α-cypermethrin 2% EC and deltamethrin 1% EC used in the experiment were diluted 1,000 times and then sprayed on chives and spring onion twice with 1-week intervals at 0, 7, 14, and 21 days before harvest. The residual insecticides were extracted from the minor crops using QuEchERS method and analyzed by GC-MS/MS. The average initial residues of α-cypermethrin and deltamethrin in chives after 21 days decreased from 2.74 to 0.82 mg/kg and 1.12 to 0.16 mg/kg, respectively. Similarly, in spring onion the residues after the same periods decreased from 0.26 to <0.01 mg/kg for α-cypermethrin and from 0.07 to <0.01 mg/kg for deltamethrin. CONCLUSION(S): The PHIs (pre-harvest intervals) for α-cypermethrin and deltamethrin in chives are recommended as 14 days before harvest with twice applications of the pesticides, whereas for α-cypermethrin in spring onion PHI of 7 days before harvest is recommended with 3 times of applications and PHI of 21 days for deltamethrin. The theoretical maximum daily intakes of cypermethrin and deltamethrin were 68.8% and 64.2%, respectively, indicating that residues of both compounds did not pose considerable health risks to consumers.

Harmonization of MRL Setting for Compounds Used Both as Pesticides and as Veterinary Drugs with Regulatory Aspects - Cypermethrin in Food of Animal Origin (농약 및 동물용의약품으로 사용되는 약제의 잔류허용기준 설정 개선 - 축산물 중 cypermethrin의 잔류 사례)

  • Kwon, Jin-Wook
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.89-97
    • /
    • 2011
  • BACKGROUND: Cypermethrins, possess eight isomers, used both as pesticide and as veterinary drug, were set different MRLs for livestock by CCPR and CCRVDF of Codex Alimentarius. Korea Food Code designates MRLs for livestock only as pesticide. METHODS AND RESULTS: This study presented necessaries of harmonization of MRL setting for compounds used both as pesticides and as veterinary drugs with regulatory aspects, showing an example of cypermethrin residue in livestock. CONCLUSION(S): For harmonization, following factors must be considered and recommended; designation of marker residue; alpha-cypermethrin, zeta- cypermethrin, and cypermethrin, clarification of the definition of target tissues; meat, fat, muscle, by-product, eggs, milk, and etc., method of analysis; clarification of target analytes of isomers, quantitation and calculation method as a principle of residue analysis.

Cross Resistance of Cypermethrin-and Methomyl-Resistance and Linkage Group Analysis on Cypermethrin Resistance in House Fly(Musca domestica L.) (Cypermethrin과 Methomyl 저항성 집파리의 교처저항성과 Cypermethrin 저항성에 대한 연관군 분석)

  • Yoo, Ju;Park, Chung-Gyoo;Lee, Si-Woo;Choi, Byeong-Ryeol
    • Korean journal of applied entomology
    • /
    • v.40 no.4
    • /
    • pp.337-344
    • /
    • 2001
  • The house fly (Musca domestica L.) strains were derived from the Yumenoshima III strain by selecting with cypermethrin and methomyl for 19 and 16 generations, respectively. The resulting strains, cypermethrin resistance strain (Cyp-R19) and methomyl resistance strain (Met-R16), showed high level of resistance by 12906 and 51 times, respectively, comparing with the susceptible SRS strain. The Cyp-R19 strain was resistant to synthetic pyrethroids such as deltamethrin, esfenvalerate, fenpropathrin, $\beta$-cyfluthrin, showing > 11000, 1231, 103, 292 times higher $LD_{50}$ values than the SRS strain, respectively. It was also resistant to 3 organophosphates and 2 carbamates such as fenitrothion, profenofos, pyridaphenthion, benfuracarb, methomyl, showing resistance ratios fo 51, 17, 49, 39 and 62 comparing to SRS strain. The Met-R16 strain was resistant to synthetic carbamate benfuracarb, showing 6 times higher $LD_{50}$ value than SRS strain. It was also resistant to 4 organophosphates such as acephate, fenitrothion, profenofos and pyridaphenthion, showing > 40, 103, 19, 60 times higher $LD_{50}$ value. It was also resistant to 5 pyrethroids and a pyrrole such as cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, $\beta$-cyfluthrin and chlorfenapyr, showing 3030, 249, 4063, 34, 330 and 86 times higher $LD_{50}$ values than the SRS strain. Cyp-R14 strain which was selected for 14 generations by cypermethrin and developed 11014 times higher resistance to the SRS strain was used in the dominance and linkage group analysis. Cypermethrin resistance inheritance was incompletely dominant in house fly as judged by the reciprocal cross between the resistant and susceptible strains. The linkage group analysis for the major factors responsible for this resistance was carried out by the$ F_1$male-backcross method, using susceptible multi-chromosomal marker aabys strain. The major factors for cypermethrin resistance were located on the 1st, the 3rd and the 4th chromosomes, and the effect of the 3rd chromosome was most prominent.

  • PDF

Characterization of Biological Degradation Cypermethrin by Bacillus amyloliquefaciens AP01 (Bacillus amyloliiquefaciens AP01 균주에 의한 사이퍼메트린의 생물학적 분해 특성)

  • Lee, Yong-Suk;Lee, Je-Hoon;Hwang, Eun-Jung;Lee, Hyo-Jung;Kim, Jae-Hoon;Heo, Jae Bok;Choi, Yong-Lark
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.1
    • /
    • pp.9-12
    • /
    • 2016
  • Strain AP01 was isolated for the biological cypermethrin degradation from soil and sediment in Busan. This strain was identified on the basis of phylogenetic analysis of the 16s rDNA sequence and assigned as Bacillus amyloliquefaciens AP01. AP01 could degrade about 45% of cypermethrin in the mineral medium at $30^{\circ}C$ and 180 rpm for 5 days. Furthermore when 2% glucose was added in the medium, the degradation rate of cypermethrin by strain AP01 was increased upto about 60%. Therefore, AP01 may serve as a promising strain in the bioremediation of soil polluted with cypermethrin.

Resistance and control of cypermethrin and chlorpyrifos as acaricide for control of hard tick Haemaphysalis longicornis (acari: ixodidae)

  • You, Myung-Jo
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.2
    • /
    • pp.117-120
    • /
    • 2014
  • Chemotherapeutic treatment is still the foundation of tick control programs. This study investigated the acaricidal efficacy of cypermethrin alone and in combination with chlorpyrifos against Haemaphysalis (H.) longicornis. Unfed larval ticks were exposed to 0.1, 1.0, and 10 mg/mL cypermethrin for 60 min, after which the acaricidal efficacy was examined based on tick mortality. All compounds showed similar suppression curves, with the best control being achieved by cypermethrin and chlorpyrifos (1 : 1 ratio) at 10 mg/mL. Effective cypermethrin concentrations for tick control were two to seven times higher than the recommended doses, indicating resistance by H. longicornis.

Effect of Cypermethrin and Piperonyl Butoxide on Toxic Response in Rats (Cypermethrin과 Piperonyl butoxide가 rat의 독성반응에 미치는 영향)

  • Chung, Kyu-Hyuok;Hong, Sa-Uk
    • YAKHAK HOEJI
    • /
    • v.34 no.2
    • /
    • pp.69-79
    • /
    • 1990
  • The aim of this experiment is to observe the toxicity of cypermethrin[S, R- -cyano-3-phenoxybenzyl-(1R, 1s, cis, trans)-2,2-dimethyl-3-(2,2-dichlorovinyl) cyclopropane carboxylate]and to investigate the synergistic effect of piperonyl butoxide on the cypermethrin toxicity. In cypermethrin (CYP) treated group, the biochemical parameters such as ALT, LDH, glucose in serum were remarkably elevated. The content of cytochrome P-450 and activity of NADPH-cytochrome c reductase in renal microsomal fraction were increased but those in hepatic microsomal fraction were not significantly increased. The activity of aniline hydroxylase and ATPase in liver were decreased. In the case of CYP plus piperonyl butoxide (PB) treated group, AST, ALT, LDH and glucose were more increased. Cytochrome P-450 and NADPH-cytochrome c reductase in liver and kidney were supressed and aniline hydroxylase and ATPase in liver were more decreased. Especially, in the case of CYP plus PB 100 mg/kg treated group, hepatic TBA value was increased but activity of glucose-6-phosphatase was remarkably depressed.

  • PDF

Residue Patterns of Procymidone, Chlorpyrifos and Cypermethrin in Peaches During Cultivation and Storage Period (복숭아의 재배 및 저장기간 중 Procymidone, Chlorpyrifos 및 Cypermethrin의 잔류량 변화)

  • Lee, Yong-Jae;Ko, Kwang-Yong;Won, Dong-Jun;Gil, Geun-Hwan;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.3
    • /
    • pp.220-226
    • /
    • 2003
  • The residue patterns of procymidone, chlorpyrifos and cypermethrin in peaches were examined. The pesticides were sprayed at 15 days before harvest and then were determined the residue at 0, 1, 2, 3, 5, 7, 10 and 15 days after pesticide application and calculated their $DT_{50}$. Also, the degradation patterns at $4^{\circ}C$ and $20^{\circ}C$ during storage period were compared. Biological half-lives of procymidone, chlorpyrifos and cypermethrin in peaches during the cultivation period were 3.1, 7.2 and 10.4 days, respectively. The biological half -life of procymidone was shorter than the others. During the storage period, half-lives of procymidone, chlorpyrifos and cypermethrin were 16.0, 14.3 and 13.1 days at $4^{\circ}C$ and 4.6, 10.2 and 12.9 days at $20^{\circ}C$, respectively. The degradation rates of these three pesticides in storage period were slower than them in cultivation period. Removal rates were $22.2{\sim}82.9%$ by tap water, and $12.5{\sim}88.8%$ by detergent solution.

Biological Degradation of Cypermethrin by Marine Bacteria, Cellulophaga lytica DAU203 (해양 세균 Cellulophaga lytica DAU203에 의한 사이퍼메트린의 생물학적 분해)

  • Lee, Je-Hoon;Lee, Yong-Suk;You, Ah-Young;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.483-487
    • /
    • 2018
  • Cypermethrin, a commonly used domestic and agricultural pyrethroid pesticide, is widely considered detrimental to the environment and to many organisms because of its residual property and toxicity. Cellulophaga lytica DAU203, isolated from coastal sediment, was chosen because it degrade cypermethrin. Cellulophaga lytica DAU203 effectively degraded cypermethrin, as the utilized carbon source and substrate, in a mineral salt medium. Effective factors, such as carbon source, nitrogen source, initial pH, and temperature, for cypermethtin biological degradation by Cellulophaga lytica DAU203 were analyzed by one factor at a time method. Temperature ($22{\sim}42^{\circ}C$), initial pH (5~9), and yeast extract concentration (0.1~2.5%[w/v]) were selected as the three most important factors. There were optimized at $33.4^{\circ}C$, pH 7.7, and 2.4%(w/v) by response surface methodology, respectively. The Box- Behnken design consisting of 46 experimental runs with three replicates was used to optimize the independent variables which significantly influenced the cypermethrin biological degradation. This model for cypermethrin degradation by Cellulophaga lytica DAU203 is highly significant (p<0.05). Under the optimized condition, Cellulophaga lytica DAU203 degraded approximately 83.7 % of the cypermethrin within 5 days. These results suggest that Cellulophaga lytica DAU203 may be useful for the biological degradation of cypermethrin in cypermethrin-contaminated environments.