• 제목/요약/키워드: cylindrical structures

검색결과 525건 처리시간 0.03초

Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells

  • Hao-Xuan Ding;Yi-Wen Zhang;Yin-Ping Li;Gui-Lin She
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.281-291
    • /
    • 2023
  • Due to the fact that the nonlinear low-velocity impact response of graphene platelets reinforced metal foams (GPLRMF) doubly curved shells have not been investigated in the existing works, this paper aims to solve this issue. Using Reddy's high-order shear deformation theory (HSDT), the nonlinear governing equations of GPLRMF doubly curved shells are obtained by Euler-Lagrange method, discretized by Galerkin principle, and solved by the fourth-order Runge-Kutta method to obtain the impact force and central deflection. The nonlinear Hertz contact law is applied to determine the contact force. Finally, the impacts of graphene platelets (GPLs) distribution pattern, porosity distribution form, porosity coefficient, damping coefficient, impact parameters (radius and initial velocity), GPLs weight fraction, pre-stressing force and different shell types on the low-velocity impact curves are analyzed. It can be found that, among the four shell structures, the impact resistance of spherical shell is the best, while that of cylindrical shell is the worst.

5종 골내 임플란트의 구조에 따른 주위의 응력분산에 관한 광탄성학적 연구 (A PHOTOELASTIC ANALYSIS OF STRESS DISTRIBUTIONS AROUND FIVE DIFFERENT TYPES OF ENDOSSEOUS IMPLANTS ACCORDING TO THEIR STRUCTURES)

  • 이정남;조성암
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.643-659
    • /
    • 1993
  • This study was performed for the purpose of evaluating the stress distributions around five different types of implants according to their structures. The stress distribution around the surrounding bone was analysed by two-dimensional photoelastic method. Five epoxy resin models were made, and vertical and lateral forces were applied to the models. A circular polariscope was used to record the isochromatic fringes. The results of this study were summerized as follows : 1. Threaded type implants showed more even stress distribution patterns than cylinderical type implants when vertical and lateral forces were applied. 2. The stress concentrated patterns were observed at the neck portion and middle portion of the cylindrical type implants comparing with threaded type implants when vertical force was applied. 3. Model 1 and model 4 which are tthreaded type implants showed similar stress distribution patterns at the middle and apical portions and more stress was concentrated at the neck porion of model 1 comparing with model 4 when vertical force was applied. The stresses around model 1 were more evenly distributed when lateral force was applied. 4. More stress was concentrated at the neck and middle portion of cylindrical type implants than threaded type implants when lateral force was applied. 5. Model 1 showed the most even stress distribution patterns when lateral force was applied and stress distribution did no occured at the apical portion of modedl 2 when lateral force was applied. 6. There were almost no differences in stress concentrated patterns with or without having hollow design. And the stress concentrated patterns were observed at the corner of apex in model 5 which has hollow design when vertical force was applied.

  • PDF

The Occurrence of Laminarionema elsbetiae (Phaeophyceae) on Rhodymenia pseudopalmata (Rhodophyta) from the Patagonian Coasts of Argentina: Characteristics of the Relationship in Natural and Experimental Infections, and Morphology of the Epi-endophyte in Unialgal Free Cultures

  • Gauna, M. Cecilia;Parodi, Elisa R.;Caceres, Eduardo J.
    • ALGAE
    • /
    • 제24권4호
    • /
    • pp.249-256
    • /
    • 2009
  • The occurrence of Laminarionema elsbetiae (Ectocarpaceae, Phaeophyceae), as epi-endophyte of Rhodymenia pseudopalmata (Rhodymeniales, Rhodophyta), described from Santa Isabel, Rawson, Argentina. L. elsbetiae grows in the host tissues forming epi-endophytic relationship in the epidermal, cortical and medullar layers. Epiphytic thalli of L. elsbetiae were unbranched filaments emerging from hostis surface. Reproductive structures of L. elsbetiae on the host were absent. On the contrary, free cultured individuals formed different reproductive structures. Macrozoosporangia containing a single large motile zoospore originated from vegetative cells, they were conical to cylindrical in shape, 30-50 ${\mu}m$ in length and 18-20 ${\mu}m$ in wide. Uniseriate plurilocular zoosporangia were cylindrical shape, 40 ${\mu}m$ in length and 10-13 ${\mu}m$ in wide. Sexual fusion was not seen. In mixed cultures of L. elsbetiae with R. pseudopalmata fronds, L. elsbetiae infected the host, grew as in natural host and, formed macrosporangia between host subcortical cells. Gametophytes of L. elsbetiae were filaments with diffuse growth, branched with a branch pattern alternate or opposite. Gametangia were plurilocular, uni or biseriate and lateral. When mature they contained 2 to 6 isogametes. The presence L. elsbetiae on R. pseudopalmata could be defined as an epi-endophytic relationship. The percentage of infection of R. pseudopalmata thalli by L. elsbetiae was 34%.A25% of the infected thalli presented a low, non-symptomatic level infection, whereas a 62% and a 13% of them exhibited respectively moderate and high indexes of infection.

섬유강화 복합재료를 이용한 반원통형 전자파 흡수구조의 설계 및 제작 (Design and Fabrication of Semi-cylindrical Radar Absorbing Structure using Fiber-reinforced Composites)

  • 장홍규;신재환;김천곤;신상훈;김진봉
    • Composites Research
    • /
    • 제23권2호
    • /
    • pp.17-23
    • /
    • 2010
  • 스텔스 기술은 적진에서 항공기나 함정의 생존 가능성을 향상시키고 임무 수행 능력을 향상 시킬 수 있다. 본 논문의 목적은 섬유강화 복합재료를 이용하여 하중지지가 가능한 곡면부 형상을 갖는 저피탐지 구조를 제안하고 군사적 활용을 위한 전방위 스텔스 플랫폼의 개발 가능성을 보여주는 것이다. 본 연구에서는 곡면을 갖는 물체의 레이더 반사면적을 줄이기 위해서 기존의 circuit analog 흡수체에 기반을 둔 전자파 흡수구조를 개발하였다. 먼저 상용 3차원 전자기장 해석 프로그램을 이용하여 사각 주기격자 패턴의 전도성 고분자 층을 갖는 전자파 흡수구조를 설계하고 성능을 해석하였다. 다음으로 섬유강화 복합재료와 전도성 고분자 재료를 이용하여 설계된 반원통형 전자파 흡수구조를 제작하였다. 저항성 시트로 작용하는 주기격자 패턴층을 제작하기 위해서 PEDOT를 기반으로 하여 폴리우레탄을 바인더로 갖는 전도성 고분자 페이스트를 사용하였다. 마지막으로 제작된 RAS의 전자파 흡수 성능을 평가하기 위해 POSTECH의 compact range 장비를 이용하여 레이더 반사면적을 측정하였다.

鉛直 원형파일에 작용하는 碎波波力의 수치해석 (Numerical Study of Breaking Wave Forces Acting on Vertical Cylindrical Piles)

  • 심재설;전인식;이홍식
    • 한국해안해양공학회지
    • /
    • 제10권2호
    • /
    • pp.100-108
    • /
    • 1998
  • 해양구조물의 연직 원형파일에 작용하는 파력은 파일 직경이 입사파장에 비해 매우 작은 경우에는 주로 항력과 관성력의 합으로 표시되는 Morison 식을 이용하여 결정하여 왔다. 그러나 Morison 식은 대칭형장을 유지하며 비교적 완만히 변화하는 파에 대해서 적용이 가능하다. 구조물 부재에 쇄파가 작용할 경우, 쇄파파력은 항력과 관성력에 추가하여 강한 충격쇄파력을 고려해야 한다. 본 연구는 임의 이차원 경사해빈에서 경계요소법을 적용하여 쇄파 내부점들의 수립자 속도 및 가속도를 계산하고, 이들을 이용하여 쇄파에 의한 쇄파파력을 계산하기 위한 모델기법을 수립하였다. 모델결과는 기존의 쇄파파력 측정 실험결과와 매우 잘 일치하였으며, Morison 식의 적용결과와 비교할 때 쇄파파력은 최고 약 3배, 모멘트는 최고 약 5배 정도 크게 나타났다

  • PDF

전단변형을 고려한 비등방성 원통형 쉘의 해석 (Analysis of Anisotropic Laminated Cylindrical Shells with Shear Deformation)

  • 장석윤
    • 한국강구조학회 논문집
    • /
    • 제11권4호통권41호
    • /
    • pp.373-384
    • /
    • 1999
  • 복합재료를 사용한 비등방성 원통형 쉘 구조형식은 단일소재의 재료역학적인 단점을 극복할 수 있다. 본 연구의 목적은 1차전단변형효과가 고려된 비등방성 원통형 쉘을 해석하는 것이다. 전단변형효과가 고려된 원통형 쉘의 거동은 기존의 고전적인 해와 길이-두께비에 따라 상당한 거동의 차이를 보이므로 이러한 전단변형효과의 고찰은 매우 중요하다고 사료된다. 또한 본 연구는 유한요소법에 근간한 상용 공학프로그램인 ANSYS와 본 연구의 프로그램결과를 비교, 검증하였으며, 비등방성 원통형 쉘의 중심각의 변화, 화이버의 보강각도 변화, 탄성계수비의 변화 등에 따른 쉘의 처짐 및 단면력을 분석하였다. 본 논문에서 사용한 유한차분법에 의한 해는 기존의 해석적인 방법으로는 해석하기 어려운 보다 다양하고 복잡한 조건을 갖는 문제에 대하여 보다 정확한 해를 얻을 수 있다. 따라서 본 논문에서 제시한 유한차분법을 이용한 다양한 비등방성 원통형 쉘의 해석결과는 복합 신소재를 사용하는 쉘 구조체의 실용화에 앞서 다양한 기준을 제시할 수 있을 것으로 판단된다.

  • PDF

Theoretical modelling of post - buckling contact interaction of a drill string with inclined bore-hole surface

  • Gulyayev, V.I.;Andrusenko, E.N.;Shlyun, N.V.
    • Structural Engineering and Mechanics
    • /
    • 제49권4호
    • /
    • pp.427-448
    • /
    • 2014
  • At present, the time of easy oil and gas is over. Now, the largest part of fossil fuels is concentrated in the deepest levels of tectonic structures and in the sea shelves. One of the most cumbersome operations of their extraction is the bore-hole drilling. In connection with austere tectonic and climate conditions, their drivage every so often is associated with great and diversified technological difficulties causing emergencies on frequent occasions. As a rule, they are linked with drill string accidents. A key role in prediction of these situations should play methods of theoretical modelling. For this reason, there is a growing need for development and implementation of new numerical methods for computer simulation of critical and post-critical behavior of drill strings (DSs). In this paper, the processes of non-linear deforming of a DS in cylindrical cavity of a deep bore-hole are considered. On the basis of the theory of curvilinear flexible rods, non-linear constitutive differential equations are deduced. The effects of the longitudinal non-uniform preloading, action of torque and interaction between the DS and the bore-hole surface are taken into account. Owing to the use of curvilinear coordinates in the constraining cylindrical surface and a specially chosen concomitant reference frame, it became possible to separate the desired variables and to reduce the total order of the equation system. To solve it, the method of continuation the solution by parameter and the transfer matrix technique are applied. As a result of the completed numerical analysis, the critical states of the DS loading in the cylindrical channels of inclined bore-holes are found. It is shown that the modes of the post-critical deforming of the DS are associated with its irregular spiral curving prevailing in the zone of bottom-hole-assembly. The possibility of invariant state generation during post-critical deforming is established, condition of its bifurcation is formulated. It is shown that infinite variety of loads can correspond to one geometrical configuration of the DS. They differ each from other by contact force functions.

EVALUATION AND TEST OF A CRACK INITIATION FOR A 316 SS CYLINDRICAL Y-JUNCTION STRUCTURE IN A LIQUID METAL REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • 제38권3호
    • /
    • pp.293-300
    • /
    • 2006
  • A liquid metal reactor (LMR) operated at high temperatures is subjected to both cyclic mechanical loading and thermal loading; thus, creep-fatigue is a major concern to be addressed with regard to maintaining structural integrity. The Korea Advanced Liquid Metal Reactor (KALIMER), which has a normal operating temperature of $545^{\circ}C$ and a total service life time of 60 years, is composed of various cylindrical structures, such as the reactor vessel and the reactor baffle. This study focuses on the creepfatigue crack initiation for a cylindrical Y-junction structure made of 316 stainless steel (SS), which is subjected to cyclic axial tensile loading and thermal loading at a high-temperature hold time of $545^{\circ}C$. The evaluation of the considered creep-fatigue crack initiation was carried out utilizing the ${\sigma}_d$ approach of the RCC-MR A16 guide, which is the high-temperature defect assessment procedure. This procedure is based on the total accumulated strain during the service time. To confirm the evaluated result, a high-temperature creep-fatigue structural test was performed. The test model had a circumferential through wall defect at the center of the model. The defect front of the test model was investigated after the $100^{th}$ cycle of the testing by utilizing a metallurgical inspection technique with an optical microscope, after which the test result was compared with the evaluation result. This study shows how creep-fatigue crack initiation for a high-temperature structure can be predicted with conservatism per the RCC-MR A16 guide.

일상생활용 장치 작동에 따른 지각자의 인지구조에 대한 집단고정관념 (Population Stereotypes as a Perceiver's Cognitive Structure on Manipulating Devices for Daily Use)

  • 정화식;강정일;정인주;신홍철;정동혁;정유진
    • The Journal of Korean Physical Therapy
    • /
    • 제20권4호
    • /
    • pp.71-78
    • /
    • 2008
  • Purpose: This study standardizes the position and direction of devices based on general user expectations and stereotypes. Population stereotypes are cognitive structures that contain the perceiver's knowledge, beliefs, and expectations about human groups. In this paper, the stereotypes that people typically expect when manipulating 'cylindrical key-in-knob locks' and 'lever-type water faucet handles' were investigated and data regarding their expectations were collected. Methods: Two sets of 600 participants, between 13 and over 60 years old, were recruited for the experiment. Each group was evenly subdivided into six age groups. Each participant was presented with cylindrical door locks mounted on a miniature door and actual lever-type water faucet handles mounted on a mockup sink. Results: If the cylindrical lock was positioned 'vertically,' 59.2% of the participants expected the device to be locked, and if the lever type faucet handle was positioned 'up,' 63.0% of the participants expected the device to be turned on. Thus, daily-use devices should be designed consistent with user expectations of operation. There was a significant difference between genders for manipulating the faucet handle between up and down. Conclusion: A more general stereotype may be defined by repetitive measurements under the same test conditions with fixed time intervals, as well as accounting for people with cognitive problems.

  • PDF

수중 동축원통쉘 구조물의 경계조건 변화에 따른 동특성 시험 (An Experimental Study. on Dynamic Characteristics of Submerged Co-axial Cylinderical Shells)

  • 박진호;류정수;김태룡;심우건
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.668-674
    • /
    • 2001
  • An experimental study was performed for two types of co-axial cylindrical shell structures in order to establish the relationship between in-air dynamic characteristics and in-water ones and to observe hydrodynamic mass effects on their mode shapes when submerged. The outer cylinders are prepared with two kinds to get more insights on the fluid-structure interaction phenomena: one is flexible, which means that the outer cylinder has almost same stiffness as the inner one, and the other is a rigid one whose stiffness is more than ten times of the inner one's(it might be regarded as the scaled-down model of the reactor internals). The finite element. analyses were also implemented to support the experimental results. The results show that the natural frequencies of a co-axial cylindrical shell structure in water are remarkably lower than those in air due to the fluid mass effects. In case of the flexible-to-flexible cylinders, there exist in-phase and out-of-phase mode shapes and they are affected by the annular gap between the. co-axial cylinders. For the in-phase mode the in-water natural frequency decreases exponentially as the gap increases, while it slightly increases in case of the out-of-phase mode due to the squeezing effect of the gap fluid. In the flexible-to-rigid case, the normalized natural frequency(in-water frequency/in-air one) of the inner cylinder(core barrel model) ranges between in-phase and out-of-phase mode frequencies of the flexible-to-flexible co-axial cylindrical structure having identical dimensions. Also the normalized natural frequency of the inner cylinder of the flexible-to-rigid one moves from near of the in-phase mode frequency into the out-of-phase mode value of the flexible-to-flexible case as circumferential mode number(n) increases.

  • PDF