• Title/Summary/Keyword: cylindrical structure

Search Result 664, Processing Time 0.024 seconds

EVALUATION AND TEST OF A CRACK INITIATION FOR A 316 SS CYLINDRICAL Y-JUNCTION STRUCTURE IN A LIQUID METAL REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • A liquid metal reactor (LMR) operated at high temperatures is subjected to both cyclic mechanical loading and thermal loading; thus, creep-fatigue is a major concern to be addressed with regard to maintaining structural integrity. The Korea Advanced Liquid Metal Reactor (KALIMER), which has a normal operating temperature of $545^{\circ}C$ and a total service life time of 60 years, is composed of various cylindrical structures, such as the reactor vessel and the reactor baffle. This study focuses on the creepfatigue crack initiation for a cylindrical Y-junction structure made of 316 stainless steel (SS), which is subjected to cyclic axial tensile loading and thermal loading at a high-temperature hold time of $545^{\circ}C$. The evaluation of the considered creep-fatigue crack initiation was carried out utilizing the ${\sigma}_d$ approach of the RCC-MR A16 guide, which is the high-temperature defect assessment procedure. This procedure is based on the total accumulated strain during the service time. To confirm the evaluated result, a high-temperature creep-fatigue structural test was performed. The test model had a circumferential through wall defect at the center of the model. The defect front of the test model was investigated after the $100^{th}$ cycle of the testing by utilizing a metallurgical inspection technique with an optical microscope, after which the test result was compared with the evaluation result. This study shows how creep-fatigue crack initiation for a high-temperature structure can be predicted with conservatism per the RCC-MR A16 guide.

Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods

  • Zamani, Abbas;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.671-682
    • /
    • 2017
  • In this research, seismic response of pipes is examined by applying nanotechnology and piezoelectric materials. For this purpose, a pipe is considered which is reinforced by carbon nanotubes (CNTs) and covered with a piezoelectric layer. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via cylindrical shell element and Mindlin theory. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite and to consider the effect of the CNTs agglomeration on the scismic response of the structure. Moreover, the dynamic displacement of the structure is extracted using harmonic differential quadrature method (HDQM) and Newmark method. The main goal of this research is the analysis of the seismic response using piezoelectric layer and nanotechnology. The results indicate that reinforcing the pipeline by CNTs leads to a reduction in the displacement of the structure during an earthquake. Also the negative voltage applied to the piezoelectric layer reduces the dynamic displacement.

Buckling of the multi-vaulted "Aster" shell under axial compression alone or combined with an external pressure

  • Araar, M.;Derbali, M.;Jullien, J.F.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.827-839
    • /
    • 1998
  • This paper presents a study of buckling of the multi-vaulted cylindrical shell ("Aster"), under an axial compression alone or combined with an external pressure. This shell which was presented in a recent paper is a self-stiffened structure having a satisfactory behaviour and a higher buckling strength under external pressure than a circular cylindrical shell with the same dimensions. The results of this study emphasize the interest of the behaviour of the "Aster" shell under two other types of loading, revealing an acceptable level of strength which is favorable for an expansion of its use in other areas.

Optimum Positioning of Rests Considering Compliance of Grinding Machine, Workpiece and Rests in Cylindrical Traverse Grinding (가로원통연삭시 연삭기와 공작물 및 방진구의 컴플라이언스를 고려한 방진구의 최적위치 선정)

  • 서장렬;이선규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.173-180
    • /
    • 2000
  • In the process of grinding a long slender type workpiece, such as ballscrew, by the external cylindrical grinding machine, the cylindricity of the workpiece depends on the distance of rests, the stiffness of supports, the diameter and material of workpiece. Conventionally the process needs to be supported by one or more rests to prevent static deflection and vibration. In this paper, the optimal position of the rests was investigated in order to minimize the cylindricity due to the static deflection, by taking compliance of the workpiece and structure into account. In order to obtain the optimal position of rests, a new modeling that is considering the spring effect of all support elements was established. Since it is so complicated to obtain the optimal position analytically for various conditions due to discontinuity, a genetic algorithm u as utilized.

  • PDF

Dynamic Analysis of External Cylindrical Grinding Considering Spindle and Workpiece Vibrations (연삭숫돌 주축 및 공작물 회전체 진동을 고려한 원통 연삭 가공의 동특성 해석)

  • 최상현;김덕현;안유민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.192-198
    • /
    • 2000
  • This paper presents multi degree analysis of self-exited vibration of grinding system including spindle and workpiece rotational effect. The governing equations are derived by applying the finite element method to structure of spindle and workpiece rotor and by estimating the grinding force. Vibration analysis is carried out for external cylindrical plunge grinding. Displacement of workpiece and grinding force is simulated with machining time. Using this model, effects of characteristics of spindle bearing and major grinding conditions on chatter growth rate are predicted. Some of results are compared with those of other previous model and show good agreements.

  • PDF

On Development of Vibrational Analysis Algorithm of Cylindrical Shell Structures With Stiffeners (보강재를 갖는 원통셸 구조물의 진동해석 알고리즘의 개발에 관한 연구)

  • 문덕홍;여동준
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.481-491
    • /
    • 1996
  • In this paper, we formulated algorithm for free vibration analysis of cylindrical shells with stiffeners by applying the transfer influence coefficient method. This was developed as a vibration analysis method suitable for using personal computer(PC). The simple computational results form PC demonstrated the validity of the present algorithm, that is, the computational high accuracy and speed, and the flexibility of programming. We compared with results of the transfer matrix method and the reference. We also confirmed that the present algorithm could provide the solutions of high accuracy for system with a lots of intermediate rigid supports and stiffeners. And all boundary conditions and the intermediate stiff supports between shell and foundation could be treated only by adequately varying the values of the spring constants.

  • PDF

Analysis of Free Vibration of a Cylindrical Shell with a Circular Plate Under Various Kinds of Boundary Conditions (다양한 경계조건에서 원판이 결합된 원통 셸의 고유진동 해석)

  • 임정식;손동성
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.936-948
    • /
    • 1998
  • A theoretical formulation for the analysis of free vibration of a cylindrical shell with a circular plate attached at an arbitrary axial position of the shell under various kinds of boundary conditions was derived and programed to get the numerical results for natural frequencies and mode shapes of the combined system. The boundary conditions of the shell to be considered here are clamped-free, clamped-simply supported, both ends clamped and both ends simply supported. The frequencies and mode shapes from theoretical calculation were compared with those of commercial finite element code, ANSYS. The results showed good agreement with those of ANSYS in frequencies and mode shapes. The program will contribute to the design optimization of a shell/plate combined system through the analysis of natural frequencies and mode shapes for the system.

  • PDF

A Numerical Analysis on the ascoutic radiation efficiency of a stiffend cylindrical structure in underwater under multi-excitation (다중가진을 받는 수중 원통구조물의 방사효율에 대한 수치해석)

  • Kang, Myunghwan;Yi, Jongju;Han, Seungjin;Bae, Sooryong;Jung, Woojin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.372-376
    • /
    • 2014
  • This study is on acoustic radiation efficiency of a tiffened cylindrical model in water-multi-excitation with phase difference using commercial numerical program ABAQUS and SYSNOISE. When the stiffened cylindrical model is under multi-excitation with phase difference, the surface vibration field is variated with phase difference of excitation. By this different surface vibration field, the acoustic radiation efficiency is also variated with phase difference of excitation.

  • PDF

Design of Wideband Cylindrical Monopole Antenna

  • Chun, Joong-Chang;Shim, Jae-Ruen;Kim, Tae-Soo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.2
    • /
    • pp.69-73
    • /
    • 2007
  • A new wideband cylindrical monopole antenna is presented for multiple band applications. Multiple band property of the proposed antenna is achieved by adjusting the coupling structure with steps between the antenna base and the ground plane. The measured -10 dB impedance bandwidths are $1.74{\sim}3.06GHz\;and\;5.59{\sim}10.62GHz$, which can cover various kinds of wireless services, such as $PCS(1.75{\sim}1.87GHz),\;IMT-2000(1.92{\sim}2.17GHz),\;WiBro(2.3{\sim}2.39GHz),\;WLAN(2.412{\sim}2.483GHz,\;5.725{\sim}5.825GHz),\;DMB(2.63{\sim}2.655GHz)$, High-band $UWB(7.2{\sim}1.02GHz)$.