• 제목/요약/키워드: cylindrical panel

검색결과 75건 처리시간 0.021초

횡하중을 받는 복합재 원통판넬의 후좌굴 해석 (Postbuckling Analysis of Composite Curved Panels under Lateral Loading)

  • 최수영;손희진;권진회;최진호;조종래
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.272-275
    • /
    • 2005
  • The postbuckling analysis of composite curved panels subjected to lateral loading was conducted by a nonlinear finite clement program, ACOS. Two kinds of graphite/epoxy composite materials, URN300 and USN 125 were tested to verify the finite element analysis. High stiffness composite material, URN300 curved panels showed the critical failure prior to initial buckling. On the contrary USN 125 curved panels showd no severe damage after snap-through. In both panels, the finite element and experimental results showed good agreement.

  • PDF

Suppression of interfacial crack for foam core sandwich panel with crack arrester

  • Hirose, Y.;Hojo, M.;Fujiyoshi, A.;Matsubara, G.
    • Advanced Composite Materials
    • /
    • 제16권1호
    • /
    • pp.11-30
    • /
    • 2007
  • Since delamination often propagates at the interfacial layer between a surface skin and a foam core, a crack arrester is proposed for the suppression of the delamination. The arrester has a semi-cylindrical shape and is arranged in the foam core and is attached to the surface skin. Here, energy release rates and complex stress intensity factors are calculated using finite element analysis. Effects of the arrester size and its elastic moduli on the crack suppressing capability are investigated. Considerable reductions of the energy release rates at the crack tip are achieved as the crack tip approached the leading edge of the crack arrester. Thus, this new concept of a crack arrester may become a promising device to suppress crack initiation and propagation of the foam core sandwich panels.

Nonlinear thermoelastic response of laminated composite conical panels

  • Joshi, R.M.;Patel, B.P.
    • Structural Engineering and Mechanics
    • /
    • 제34권1호
    • /
    • pp.97-107
    • /
    • 2010
  • Nonlinear thermoelastic static response characteristics of laminated composite conical panels are studied employing finite element approach based on first-order shear deformation theory and field consistency principle. The nonlinear governing equations, considering moderately large deformation, are solved using Newton-Raphson iterative technique coupled with the adaptive displacement control method to efficiently trace the equilibrium path. The validation of the formulation for mechanical and thermal loading cases is carried out. The present results are found to be in good agreement with those available in the literature. The adaptive displacement control method is found to be capable of handling problems with multiple snapping responses. Detailed parametric study is carried out to highlight the influence of semicone angle, boundary conditions, radius-to-thickness ratio and lamination scheme on the nonlinear thremoelastic response of laminated cylindrical and conical panels.

스탬핑 금형의 성형성 평가를 위한 유한요소/기하학힘평형법 프로그램 개발과 응용 (Development and application of FEM/GEM program for evaluating formability of stamping dies)

  • 김종필;금영탁
    • 한국정밀공학회지
    • /
    • 제13권3호
    • /
    • pp.80-93
    • /
    • 1996
  • A 2-dimensional FEM/GEM program was developed under the plane strain assumption using linear line elements for analyzing stretch/draw forming operations of an arbitrarily shaped draw-die. FEM formulation adopted a new algorithm for solving force equilibrium as well as non-penetration condition simultaneously. Also, a rigid-viscoplastic material model with Hill's normal anisotropic yield condition and rate-sensitive hardening law is assumed, along with the Coulomb friction law in the contact regions. For the case of numerical divergence at nearly final forming stages, geometric force equilibrium method(GEM) is also introduced. The developed program was tested by simulating the forming processes of cylindrical punch/open die, and the drawing processes of automotive oilpan and hood inner panel in order to verify the usefulness and validity of FEM/GEM formulation. The numerical simulation verified the validity and robustness of developed program.

  • PDF

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

원전 금속단열재의 구조 건전성 강화를 위한 설계 방안 (Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant)

  • 이성명;어민훈;김승현;장계환
    • 한국안전학회지
    • /
    • 제30권3호
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

감자 주식화(主食化)에 관(關)한 연구[제1보](硏究 [第一報]) - 감자쌀 제조(製造)에 관(關)한 예비시험(豫備試驗) - (Studies on White Potato Processing for Mixed Cooking with Rice as Main I ish [Part I] - Preliminary Studies of White Potato Granulation for Main Dish -)

  • 김재욱;조성환
    • Applied Biological Chemistry
    • /
    • 제19권4호
    • /
    • pp.183-188
    • /
    • 1976
  • 농가에서 감자를 쉽게 절단 변색처리하여 주식으로 흔취 할 수 있는 감자쌀의 제조방법을 확정하기, 위한 예비시험으로서 감자의 절단 모양과 크기, 감자쌀의 혼취 기호성 및 적정 혼취량을 연구하여 다음과 같은 결과를 얻었다. 1. 건조 감자쌀을 위한 생감자의 모양은 장방형보다 원통형이 좋고 직경 6mm내외, 길이 $10{\sim}13mm$의 크기가 적당하였다. 2. 감자쌀을 혼취한 쌀밥은 백미 쌀밥보다 기호도가 약간 높으며 30%가 가장 좋았다. 3. 감자쌀과 기타 잡곡 혼취 쌀밥의 대비 식미시험 결과는 혼취량에 따라 다르나 대체로 감자 혼취 쌀밥이 좋았다.

  • PDF

등매개(等媒介) 변수요소(變數要素)를 이용한 쉘의 선형(線形) 및 비선형(非線形) 안정해석(安定解析) (Linear and Nonlinear Stability Analysis of Shells Using Degenerated Isoparametric Elements)

  • 이남호;최창근
    • 대한토목학회논문집
    • /
    • 제7권2호
    • /
    • pp.21-28
    • /
    • 1987
  • 본(本) 연구(硏究)는 불안정(不安定)현상을 포함한 대변위(大變位)를 고려한 해석(解析)에 8절점(節點) 등매개(等媒介) 변수요소(變數要素)를 적용하여 그 요소(要素)의 우수성을 증명하고 있다. 여기서 채택하고 있는 비선형(非線形) 공식(公式)은 Total Lagrangian 공식(公式)이며, 해석(解析)방법은 하중증분(荷重增分)을 병행한 Newton-Raphson 방법을 이용했다. 안정해석(安定解析)을 수행할 경우 비선형(非線形) 경로(經路)를 따라 반복함으로써 최종 파괴하중을 매 순간 측청할 수 있도록 프로그램을 작성했다. 검증(檢證)을 위해 등분포(等分布) 하중(荷重)을 받는 원개형(圓箇形)쉘, 축(軸)하중을 받는 단순지지(單純支持)형 평판, 그리고 등분포(等分布) 하중(荷重)을 받는 고정된 평판 등과 같은 예제를 수행하여 이론해(理論解) 및 다른 결과(結果)들과 비교 분석했다.

  • PDF

내충격 개방형 구조물에 대한 피탄 및 폭압 충격 해석 (Analysis on the Ballistic and Blast Shock for a Space Frame Structure)

  • 주재현;김학인;구만회;박지우
    • 한국군사과학기술학회지
    • /
    • 제13권5호
    • /
    • pp.933-940
    • /
    • 2010
  • A numerical analysis for the space frame structure under ballistic and blast loads was performed using LS-DYNA, a commercial code. The space frame structure was developed to be adapted to the ground vehicle in the future and it was designed to build with Al7039 frames and lightweight multi-layered panels for the purpose of weight reduction and shock mitigation. The analyses have done for side impacts by a cylindrical projectile and Comp. C-4 explosive representing major threats to the vehicle. The deformed shape of the panel section and stresses as well as accelerations of the frames calculated from LS-DYNA were compared to the test results to validate the analysis model. The internal energies for panels and frames from LS-DYNA were also compared to each other to discern their role in absorbing the ballistic and blast impact.