• Title/Summary/Keyword: cylinder test

Search Result 908, Processing Time 0.024 seconds

A Conceptual Design for a Kinetic Performance Test System for the Tilting Mechanism Using Hydraulic Cylinder (유압실린더를 활용한 틸팅메카니즘 운동특성 평가 시스템 구축에 관한 개념설계)

  • Lee, Jun-Ho;Han, Seong-Ho;Kim, Ho-Yeon;Nam, Jin-Uk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1035-1040
    • /
    • 2011
  • In this paper we deal with a kinetic performance test system using hydraulic cylinder. It is possible to measure only current using the conventional electro-mechanical actuator when the bogie is in the process of the tilting. This makes impossible to measure the force acting on the tilting actuator. In order to overcome this problem a kinetic performance test system using hydraulic cylinder is proposed. The proposed system provide easy kinetic evaluation for the tilting mechanism and evaluation for the co-relation between load acting on the tilting actuator and the moving displacement(strock) of the tilting actuator.

  • PDF

In -Cylinder Flow Characteristics Varying Intake Valve Lift (밸브 리프트 변화에 따른 실린더 내 흡입 공기의 유동 특성)

  • 윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.82-88
    • /
    • 1999
  • The object of this study is to find new evaluation index for in-cylinder flow chracteristics istead of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angularflow characteristics instead of swirl and tumble coefficient.

  • PDF

Dynamic Analysis of a Rotor System Having Thin-walled Cylinder Combined with Its Shaft (회전축에 Thin-walled Cylinder가 결합된 회전체 시스템의 동적 해석)

  • Choi, Young-Hyu;Park, Seon-Kyun;Hoong, Dae-Sun;Chung, Won-Jee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.631-636
    • /
    • 2000
  • In this paper a transfer method model was introduced in order to analyze critical speeds and vibration modes of a flexible rotor system, whose rotor shaft is cupped into and fitted with a thin-walled cylinder at its end. The computed analysis results were compared with those of the experimental modal test. Both results show good agreement each other. Furthermore the free-run(or run-down) test result for the real rotor system also shows that the proposed transfer matrix method modelling can be successfully applicable to analyzing accurate critical speeds(or natural frequencies) of the rotor system.

  • PDF

A Study on the Pressure Pulsation Reduction for a Hydraulic Clutch Operating System (유압식 클러치 조작기구의 압력맥동저감에 대한 연구)

  • Lee, Choon-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.93-99
    • /
    • 2008
  • The clutch is a subcomponent of the transmission that is designed to engage and disengage power flow between the engine and the transmission. Recently, the engine power of automobile has been continuously increased because of customer's demand for the bigger one. As the engine power is increased, the vibration transmitted to the hydraulic clutch operating system has been increased. Therefore the demand for the reduction of clutch pedal vibration during the operation of the clutch system has been increased. This paper describes the pressure pulsation reduction characteristics of the damper cylinder which is applied to the hydraulic clutch operating system. And the purpose of this study is to confirm the availability of a simulation model and investigating the test results of hydraulic clutch operating system. The test results are compared with the simulation results. Therefore it may be concluded that the simulation model and test results will be very useful f3r the design of hydraulic clutch damper cylinder.

A Study on Combined Effects between Swirl and Tumble Flow of Intake Port System in Cylinder Head (엔진 흡입포트 시스템 유동특성 규명을 위한 스월-텀블 합성효과에 관한 연구)

  • 윤정의
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.76-82
    • /
    • 1999
  • The object of this study is to find new evalution index for in-cylinder flow characteristics insteady of current swirl, tumble coefficient using steady flow test rig on intake port system. To this end, port flow rig test was conducted on DOHC head varying intake valve lift respectively. Finally combination angular coefficient and inclination angle were introduced as new evaluation index for in-cylinder angular flow characteristics.

  • PDF

Position Control of ER Valve-Cylinder System Via Neural Control Technique (신경 제어 기법을 이용한 ER 밸브-실린더 시스템의 위치 제어)

  • 정재민;최승복;정재천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.52-64
    • /
    • 1996
  • This paper presents an active position control of a single-rod cylinder system featuring an electrorheological(ER) fluid-based valve. The ER fluid consisting of silicone oil and chemically treated particles is firstly composed and its Bingham property is tested as a function of imposed electric field. A multi-channel plate type of ER valve is then designed and manufactured on the basis of the field-dependent Bingham model. Performance test of the ER valve is undertaken by evaluating pressure drop with respect to the number of electrode as well as the intensity of the electric field. Subsequently, the ER valve-cylinder system is constructed and its governing equation of motion is derived. A neural control scheme for position control of the cylinder is formulated by incorporating proportional-plus-derivative(PD) controller and implemented. Experimental results of both regulating and tracking control responses are presented in order to demonstrate the efficacy of the proposed ER valve-cylinder control system.

  • PDF

ANALYSIS OF IN-CYLINDER FUEL-AIR MIXTURE DISTRIBUTION IN A HEAVY DUTY CNG ENGINE

  • Lee, Seok-Y.;Huh, Kang-Y.;Kim, Y.M.;Lee, J.H.
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.93-101
    • /
    • 2001
  • Distribution of fuel-air mixture has a strong influence on performance and emissions of a compressed natural gas (CNG) engine. In this paper, parametric study is performed by KIVA-3V to investigate fuel-air mixture with respect to injection timing, cycle equivalence ratio and engine speed. With open-valve injection intensive mixing during intake and compression stroke results in relatively homogeneous mixture in the cylinder. Sequential induction of fuel-air mixture and fresh air results in stratification in the cylinder among the test cases at closed-valve injection. There is close similarity in the calculated distributions of the mixture in the cylinder with different cycle equivalence ratios and engine speeds. The results are compared against pressure traces and flame images obtained in a single cylinder engine converted from a 11L six-cylinder heavy duty diesel engine.

  • PDF

Analysis of the thermal behaviors of the cylinder block of a small gasoline engine (소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석)

  • 김병탁;박진무
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

The influence of various factors on piston friction (피스턴마찰에 미치는 각 인자의 영향)

  • 이종태;이성열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.45-53
    • /
    • 1983
  • There exist many kinds of frictions in internal combustion engine such as piston ring and skirt, cam and tappet, bearing friction etc. Among them, the frictions between piston ring, skirt and cylinder are particular. These frictions for motoring test are differ from that of firing test even though the temperature of cooling water and lubricating oil keep identically. The frictions for firing test are increased due to combustion pressure and products. The precise calculation of the friction is difficult. But we can assume that the friction is governed by the viscosity of lubricating oil and gas pressure of cylinder. And the viscosity of lubricating oil is dependant on gas temperature of cylinder, so the piston friction may be governed by gas pressure and temperature of cylinder. In this treatise, we propose the method of evaluating piston friction under the condition of constant engine speed, and we analyzed the behaviours and influence of factors concerned with the piston friction for output correction when the inlet pressure and temperature were varied. The main results are as follows: 1) The behaviours on the inlet conditions for the contact force of the piston rings and the viscosity of the lubricating oil concerned with piston friction are found. 2) The essential point the these behaviours is dependant on the cyclic variation following to the inlet conditions. 3) According to our analysis, It was observed that the viscosity of lubricating oil is more effective than the contact force to the piston rings.

  • PDF

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.