• 제목/요약/키워드: cylinder rotation direction

검색결과 16건 처리시간 0.021초

회전방향과 깊이 지각에서의 양안부등과 Pulfrich 효과의 상호작용 (Interaction of Binocular Disparity and Pulfrich Effect in the Perception of Rotation Direction and Depth of a Transparent Rotating Cylinder)

  • 이형철
    • 인지과학
    • /
    • 제16권4호
    • /
    • pp.243-254
    • /
    • 2005
  • Pulfrich 효과는 운동정보를 처리하는 기제가 깊이정보도 처리할 가능성을 시사하는데, 다양한 신경생리학적 결과들이 이러한 가능성을 지지한다. 대표적인 깊이정보인 양안부등을 처리하는 기제가 Pulfrich 효과도 처리할 것이라는 가능성이 제기되어 왔지만, 두 가지 정보원이 하나의 자극 내에 공존하는 경우에 두 정보원의 상호작용 특성을 규명하기 위한 정신물리학적 연구는 없었다. 본 연구는 양안부등과 Pulfrich 효과를 이용하여 회전하는 무선점 반투명 원통체의 회전반향과 깊이를 일관되게 (일치조건) 또는 일관되지 않게 정의하는 조건 (불일치 조건)에서의 원통체의 지각된 깊이와 회전방향을 측정하였다. 일치조건에서 지각된 원통체의 깊이는 양안부등 또는 Pulfrich효과 단독에 의하여 정의된 원통체의 지각된 깊이보다 컸다. 흥미롭게도 불일치 조건에서 원통체의 지각된 회전방향은 양안부둥과 Pulfrich효과의 상대적인 강도에 의하여 조절되었다. 이러한 실험결과는 양안부등과 Pulfrich효과가 하나의 처리기제를 공유함을 함의한다.

  • PDF

회전하는 원형실린더를 지나는 균일전단 유동에 관한 수치연구 (Numerical Study on Uniform-Shear new over a Rotating Circular Cylinder)

  • 강상모
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.577-589
    • /
    • 2005
  • The present study has numerically investigated two-dimensional laminar flow over a steadily rotating circular cylinder with a uniform planar shear, where the free-stream velocity varies linearly across the cylinder. It aims to find the combined effect of rotation and shear on the flow. Numerical simulations using the immersed boundary method are performed for the ranges of $-2.5{\le}\alpha{\le}2.5$ and $0{\le}K{\le}0.2$ at a fixed Reynolds number of Re=100, where a and K are respectively the dimensionless rotational speed and velocity gradient. Results show that the positive shear, with the upper side having the higher free-stream velocity than the lower one, favors the effect of the counter-clockwise rotation $(\alpha<0)$ but countervails that of the clockwise rotation $(\alpha>0)$. Accordingly, the absolute critical rotational speed, below which vortex shedding occurs, decreases with increasing K for $(\alpha>0)$, but increases for $\alpha>0$. The vortex shedding frequency increases with increasing \alpha (including the negative) and the variation becomes steeper with increasing K. The mean lift slightly decreases with increasing K regardless of the rotational direction. However, the mean drag and the amplitudes of the lift- and drag-fluctuations strongly depend on the direction. They all decrease with increasing K for $\alpha>0$, but increase for $\alpha<0$. Flow statistics as well as instantaneous flow folds are presented to identify the characteristics of the flow and then to understand the underlying mechanism.

가열된 회전원주를 지나는 정상유동 및 열전달해석 (Numerical Solution of Steady Flow and Heat Transfer around a Rotating Circular Cylinder)

  • 부정숙;이종춘
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3135-3147
    • /
    • 1993
  • A numerical method is presented which can solve the steady flow and heat transfer from a rotating and heated circular cylinder in a uniform flow for a range of Reynolds number form 5 to 100. The steady response of the flow and heat transfer is simulated for various spin parameter. The effects on the flow field and heat transfer characteristics known as lift, drag and heat transfer coefficient are analyzed and the streamlines, velocity vectors, vorticity, temperature distributions around it were scrutinized numerically. As spin parameter increases the region of separation vortex becomes smaller than upper one and the lower region will vanish. The lift force, a large part is due to the pressure force, increases as the Reynolds number and it increases linearly as spin parameter increases. The pressure coefficient changes rapidly with spin parameter on the lower surface of the cylinder and the vorticity is sensitive to the spin parameter near separation region. As spin parameter increases the maximum heat coefficient and the thin thermal layer on front region are moved to direction of rotation. However, with balance between the local increase and decrease, the overal heat transfer coefficient is almost unaffected by rotation.

영상처리 기법을 이용한 원통형 용기내의 회전유속의 측정 (Image Processing Technique for Rotational Velocity Measurements in a Circular Cylinder)

  • 김재원;엄정섭;임태규
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.13-19
    • /
    • 1995
  • An experimental investigation has been made for flow in a circular cylinder with a rotating bottom disk. Flow system considered in this paper is a characteristic model of interior flows of an electric washing machine. Flows in a tub of an electric washing machine are driven by a rotating bottom disk called a pulsator. The simple and characteristic model was composed of a circular cylinder with impulsively rotating endwall disk and a viscous fluid in it. Rotational motion of the pulsator is periodic and alternative in rotation direction. The flow field in the interior region is governed by a horizontal boundary layer forms on the impulsively rotating disk. Experimental approach was accomplished by adopting an image processing technique for velocity measurements. Comprehensive details of the flow structure are presented. Also a meridional circulation is obtained by tracking image particles suspended in the fluid. Flow structure and data are successfully procured for this complex rotating flow field.

  • PDF

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(2) - ISM와 PIV 측정의 비교 (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(2) - Comparison of ISM and PIV Measurement)

  • 박찬준;엄인용
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.139-147
    • /
    • 2015
  • This paper is the second investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous work, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation might cause serious problems. In this study, intake valve angle is selected as a main parameter for the assessment because the main flow direction to cylinder governed by this angle has the strongest influence on the in-cylinder flow pattern. For this purpose, four heads, which have the different angle, are prepared and the flow characteristics are estimated both by the conventional impulse swirl meter and a particle image velocimetry at 1.75 times bore position apart from the cylinder head, which is widely used plane in the steady flow measurement. The results show that both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75 plane, however, the effects of two factors act in the opposite direction. In addition, the profile's influence is much greater than that of the eccentricity.

K0-압밀점토(壓密粘土)의 주응력회전(主應力回轉) 효과(効果) (The Effects of Principal Stress Rotation in K0-Consolidated Clay)

  • 홍원표
    • 대한토목학회논문집
    • /
    • 제8권1호
    • /
    • pp.159-164
    • /
    • 1988
  • 연직하중(鉛直荷重), 구속압(拘束壓) 및 torque를 각각 독립적으로 작용시킬 수 있는 비틀림전단시험(剪斷試驗)을 실시하여 주응력축(主應力軸)을 회전(回轉)시켰을 경우, 변형율증분방향(變形率增分方向)과 응력방향(應力方向) 혹은 응력증분방향(應力增分方向) 사이의 관계가 조사되었다. 이 비틀림전단시험(剪斷試驗)은 $K_0$-압밀점토시료(壓密粘土試料)에 대하여 비배수(非排水) 및 배수(排水) 상태하에서 주응력축회전(主應力軸回轉)이 가능한 전 응력경로(應力徑路)로 실시되었다. 본(本) 연구(硏究)결과 파괴시의 변형율증분(變形率增分)벡터의 방향은 응력(應力)벡터방향과 일치함을 알 수 있었다. 즉 변형율증분(變形率增分)벡터방향은 초기의 낮은 응력단계(應力段階)에서는 응력증분(應力增分)벡터 방향과 일치하지만 높은 응력단계(應力段階)에서는 응력(應力)벡터방향과 일치하게 된다. 이는 점토(粘土)의 거동(擧動)이 응력의 증가에 따라 탄성(彈性)에서 소성(塑性)으로 변천되어 감을 의미한다. 따라서 주응력축회전(主應力軸回轉)시의 점토거동(粘土擧動)의 구성식화(構成式化)에는 탄소성이론(彈塑性理論)의 적용이 가능함이 입증되었다.

  • PDF

아이스슬러리 제빙장치의 열전달 해석 (Heat Transfer Analysis of Ice Slurry Generator)

  • 신유환;이윤표
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.984-989
    • /
    • 2009
  • The present study has been conducted to predict the temperature distribution in the core of the scraper type ice generator. The analytic model was simplified as the flow in the annular type cylinder, which had an inside wall moving in axial direction due to the rotation of screw and a fixed outside wall. The governing equations were arranged by the method of separation of variables. The results corresponded to the exact solutions of the Bessel function. The qualitative results such as general characteristics of heat transfer in annulus flow from outer cylinder wall to the inside wall were obtained. However the amount of the heat transfer was underestimated as low as $1/5{\sim}1/6$ of the designed value.

  • PDF

정상유동 장치에서 유동 특성 평가 방법에 대한 연구(1) - 문제의 제기 (Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(1) - Raising Issue)

  • 박찬준;엄인용
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.88-96
    • /
    • 2015
  • This paper is the first investigation on the evaluation methods of flow characteristics in the steady bench. For this purpose, several assumptions used in the steady flow evaluation are examined, comparing the measured and/or processed results by the conventional impulse swirl meter with the ones by the real velocity through a particle image velocimetry. The results show that the most questionable assumption is the solid rotation of swirl. With regard to this assumption, the flow characteristics by the conventional methods are distorted seriously by both of the eccentricity of the swirl center and non-uniform velocity profile along the cylinder radial direction. In addition, the cylinder axial velocity distribution also has the great effect on the flow characteristics.

좌우 틸팅이 가능한 굴삭기 버켓용 로터리 액츄에이터 설계 및 시험 (Design and Performance Test of a Rotary Actuator for Side Tilting Excavator Bucket)

  • 박민수;이준석;김도엽;이응석
    • 한국정밀공학회지
    • /
    • 제34권1호
    • /
    • pp.47-51
    • /
    • 2017
  • Generally, a working excavator has only one directional bucket tilting angle, which is up-forward. However, side direction rotation of the bucket would allow variety of working output. We designed a hydraulic rotary actuator comprising a double rod hydraulic cylinder with a rack-pinion gear set for use in excavator bucket with side tilting mechanism, thus converting the linear to angular motion. The proposed side tilting rotary actuator was designed with parts suitable for medium size of heavy duty excavator. These mechanical parts were inexpensive to purchase and the manufacturing cost was reasonable. The proposed mechanism is potentially useful for excavator with variety of working output.

이중용량 왕복동 압축기 신뢰성 확보에 대한 연구 (A Study on the Reliability of a Dual Capacity Reciprocating Compressor)

  • 김종봉
    • 한국정밀공학회지
    • /
    • 제26권7호
    • /
    • pp.81-90
    • /
    • 2009
  • Due to environmental issues, the development of low energy consumption products has become one of the main topics in the home appliance industry. The energy consumption of a refrigerator depends on the efficiency of its compressor as well as on the refrigerator cycle design, such as the capacity modulation. In this study, a dual capacity, i.e., two-step capacity modulation (TCM), reciprocating compressor is developed. In a TCM compressor, capacity modulation is achieved by changing the dead volume in the cylinder. Instead of a concentric sleeve, an eccentric sleeve, a key, and a spring are used to change the dead volume for the clockwise and counterclockwise rotation of a motor. When the compressor changes its operating mode from full capacity to partial capacity or in opposite direction, the key may collide with the eccentric sleeve. The structural reliability and mode change reliability were confirmed by analysis and experiment.