• Title/Summary/Keyword: cylinder pressure

Search Result 1,552, Processing Time 0.029 seconds

A Computational Study of the Improvement of Two-Dimensional Subsonic Diffuser Performance Using the Turbulent Wake Caused by a Cylinder (실린더 후류를 이용한 2 차원 디퓨저 성능개선에 관한 수치해석적 연구)

  • Kim, Tae-Ho;Yoon, Bok-Hyun;Oh, Dae-Geun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1720-1725
    • /
    • 2004
  • The present study addresses a computational work to investigate the influence of a turbulent wake flow on the pressure recovery of a two-dimensional subsonic diffuser. The turbulent wake is generated by a cylinder with a small diameter, which is installed at the diffuser inlet. Computation is applied to two-dimensional steady Navier-Stokes equations. The computational results are qualitatively well compared to existing experimental data. The results show that the diffuser pressure recovery is strongly dependent on the diameter and location of the cylinder. It is found that there is a certain diameter and location of cylinder for the diffuser pressure recovery to be most enhanced. Compared with no cylinder case, the diffuser performance increases up 24%.

  • PDF

Investigation into the Causes of Rupturing Ammonia-filled Cylinders (액상 암모니아 충전 용기의 파열 원인 분석)

  • BYOUNGIL JEON;CHANGHYUP PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.4
    • /
    • pp.451-459
    • /
    • 2024
  • This paper quantitatively analyzes the causes of ammonia-filled- cylinder rupture based on Tait equation and the safety guidelines, focusing on liquid expansion, internal temperature, and overfilling. When there exists a safety volume, i.e., gas-occupied volume within the ammonia cylinder, the internal pressure due to temperature rise corresponds to the vapor pressure at that temperature, with an approximate circumferential stress increase of 1.43 MPa/℃. In the absence of the safety volume, the internal pressure due to temperature rise matches the pressure of the compressed liquid ammonia at that temperature, and the resulting circumferential stress gradient in the cylinder shell is approximately 55.94 MPa/℃.

Analysis of the Room Temperature Fitting Process for Assembling the Part(Valve Seat and Cylinder Head) (Valve Seat/Cylinder Head 단품조립을 위한 상온압입공정 해석)

  • Bae, J.H.;Kim, M.S.;Woo, T.K.;Kim, T.J.;Ho, J.D.;Kim, C.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.607-616
    • /
    • 2009
  • There are three sub-processes associated with the assembly of the valve seat and cylinder head; heat fitting, cold fitting, and shrink fitting. In the heat fitting stage, the cylinder head is heated to a specified temperature and then squeezed toward the outer diameter of the valve seat. The cold fitting process cools the valve seat and safely squeezes it toward the inner diameter of cylinder head. However, these methods increased the installations & running cost and curtailed productivity. To address these problems, we analyzed the shrink fitting process using the contact pressure caused by fitting interference between the outer diameter of the valve seat and the inner diameter of the cylinder head. In this study, a closed form equation for predicting the contact pressure and fitting load is proposed. For quality control of the assembly line, principal factors of the shrink fitting process influenced in contact pressure were simulated by the FEM. Actual loads measured in the field showed good agreement with the results obtained by theoretical and finite element analysis.

Measurement of Oil Pressure Distribution between the Piston and Cylinder in Hydraulic Piston Pump (유압 피스톤 펌프의 피스톤과 실린더 사이에서의 압력측정)

  • 김영환;박태조
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.237-242
    • /
    • 2000
  • In this paper, an experiment was carried out to measure the hydrodynamic oil pressure distribution in the clearance gap between a piston and cylinder. The results showed that the pressure distributions are highly affected by the eccentricity of the piston. Therefore present experimental method can be used to enhance the performance of hydraulic piston pumps. Further experimental studies for various operating conditions and improvement in data acquisition methods are required to obtain more accurate results.

  • PDF

Study on Stokes Flow Past Circular Cylinder in Two-Dimensional Channel (2차원 채널 내의 원형실린더를 지나는 스톡스 유동에 대한 연구)

  • Yoon, Seok-Hyun;Jeong, Jae-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.895-900
    • /
    • 2013
  • A two-dimensional Stokes flow past a circular cylinder in a channel is analyzed. The circular cylinder is located at the center of the channel, and a plane Poiseuille flow exists upstream and downstream far from the circular cylinder. The Stokes approximation is used, and the flow is investigated analytically by using the eigenfunction expansion and the least square methods. From the analysis, the stream function and pressure distribution are obtained, and the pressure and shear stress distributions on the circular cylinder and channel wall are calculated. The additional pressure drop induced by the circular cylinder and the force exerted on it are calculated as functions of the length of the radius of the circular cylinder. For a typical length of the radius of the circular cylinder, the streamline pattern and pressure distribution are shown.

True Rolling Technique of New Gravure-Offset Printing for R2R Over-Piling (R2R 중첩인쇄를 위한 그라비어오프셋인쇄의 투루롤링 기술)

  • Choi, Byung-Oh;Jo, Jeong-Dai;Kim, Dong-Soo;Lim, Kyu-Jin;Ryu, Byung-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1131-1140
    • /
    • 2011
  • A new rotary gravure-offset printing unit is constructed by paralleling a gravure plate cylinder, a blanket cylinder and a impression roller. A Muti-Unit Gravure-Offset Printing Press(MUGOP) equipped with a series of the 3 printing units is utilized for roll-to-roll fine printing. Its core technology is precise over-piling printing of fine patterns. The severe problems of 'slurring' and 'doubling' in typical offset printing are unavoidable, which can be eliminated by applying a soft pad-type blanket cylinder and the unique 'true rolling' technique. Nip pressure between the blanket cylinder and the plate cylinder is measured by the constant pressure control system which equipped with load cells attached on the cylinders' axes. The running circumference of the blanket cylinder is increased to reach the same circumference of the plate cylinder as the pressure increasing, so that the specifications of the blanket cylinder is determined by the relationships of its shore hardness, diameter and nip pressure. When a softer blanket is used, a blanket cylinder of smaller diameter could give higher nip pressure. Realization of the true rolling technique on the MUGOP makes multilayer printing possible as well as fine printing in printed electronics.

Analysis for Lubrication between a Rotating Cylinder and a Translating Plate (회전하는 원통과 병진운동하는 평판사이의 윤활유동해석)

  • 정호열;정재택
    • Tribology and Lubricants
    • /
    • v.18 no.6
    • /
    • pp.411-417
    • /
    • 2002
  • Two dimensional slow viscous flow between a rotating cylinder and a translating plate is investigated using Stokes' approximation. An exact formal expression of the stream function is obtained by using the bipolar cylinder coordinates and Fourier series expansion. From the stream function obtained, the streamline patterns are shown and the pressure distribution in the flow field is determined. By integrating the stress distributions on the cylinder, the farce and the moment exerted on the cylinder are calculated. The flow rate through the gap between the cylinder and the plate is also determined as a function of the distance between the cylinder and the plate. Special attention is directed to the case of very small distance between the cylinder and the plate concerned with the lubrication theory and the minimum pressure is calculated to explain a possible cavitation.

Analysis of heat conduction of cylinder block of turbocharged gasoline engine by boundary element method (경계요소법에 의한 터보과급 가솔린기관 실린더블럭의 열전도 해석)

  • 김은태;최영돈;홍진관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.41-54
    • /
    • 1989
  • In this study, steady state heat conduction problems of the cylinder block of turbocharged gasoline engine were solved by the boundary element method. Surface of the cylinder block was divided by the triangular cells with constant potential. Temperature distribution, effective heat transfer coefficient of the cylinder block were investigated with variation of equivalence ratio, engine speed and boost pressure. The results show that maximum temperature of cylinder block increase rapidly with increasing engine speed and boost pressure. The monolithic structure of cylinder block results in sever inhomogeneity of inner wall temperature at the high engine speed and boost pressure.

  • PDF

Effect of parapets to pressure distribution on flat top of a finite cylinder

  • Ozmen, Y.
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.465-477
    • /
    • 2013
  • In this paper, the effects of parapets on the mean and fluctuating wind pressures which are acting on a flat top of a finite cylinder vertically placed on a flat plate have experimentally been investigated. The aspect ratio (AR) of cylinder is 1 and the Reynolds number (Re) based on cylinder diameter and free stream velocity is 150000. The pressure distributions on the flat top and the side wall of the finite cylinder immersed in a simulated atmospheric boundary layer have been obtained for different parapet heights. The large magnitudes of mean and minimum suction pressures occurring near the leading edge were measured for the cases with and without parapet. They shift to the further downstream on the circular top with increasing parapet height. It is seen that the parapets reduce the local high suction on the top up to 24%.

Experimental studies of impact pressure on a vertical cylinder subjected to depth induced wave breaking

  • Vipin, Chakkurunnipalliyalil;Panneer Selvam, Rajamanickam;Sannasiraj Annamalaisamy, Sannasiraj
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.439-459
    • /
    • 2022
  • This paper describes experimental studies of impact pressure generated by breaking regular waves in shallow water on a vertical cylinder. Experimental work was carried out in a shallow water flume using a 1:30 - scale model of a vertical rigid circular hollow cylinder with a diameter 0.2 m. This represents a monopile for shallow water offshore wind turbines, subjected to depth induced breaking regular waves of frequencies of 0.8 Hz. The experimental setup included a 1 in 10 sloping bed followed by horizontal bed with a constant 0.8 m water depth. To determine the breaking characteristics, plunging breaking waves were generated. Free surface elevations were recorded at different locations between the wave paddle to the cylinder. Wave impact pressures on the cylinder at a number of elevations along its height were measured under breaking regular waves. The depth-induced wave breaking characteristics, impact pressures, and wave run-up during impact for various cylinder locations are presented and discussed.