• 제목/요약/키워드: cylinder near wake

검색결과 81건 처리시간 0.026초

O-ring 을 이용한 원주의 저항감소에 관한 실험적 연구 (Drag Reduction of a Circular Cylinder With O-rings)

  • 임희창;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2089-2094
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167D, 0.05D and 0.067D with pitches of PPD=1D, 0.5D and 0.25D. The drag force, mean velocity and turbulent intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of $Re_D=7.8{\times}10^3{\sim}1.2{\times}10^5$. At $Re_D=1.2{\times}10^5$, the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.

  • PDF

자유 낙하하는 사각 실린더 주위의 유동 구조 (Flow Structures Around a Freely-falling, Rectangular Cylinder)

  • 전충호;이창열;윤현식
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.8-15
    • /
    • 2010
  • The flow around a two-dimensional, rectangular cylinder that is freely falling in a channel was simulated using the immersed boundary method with direct forcing to determine the interactions between the fluid and the structure. The results of the present study were in good agreement with previous experimental results. Regardless of the H/L ratio (where H and L are the height and width of the rectangular cylinder, respectively), the flow structures had essentially the same pattern as the two symmetrical circulations that form about the horizontal center of the cylinder, with those centers located at each lateral position near the wake. When the cylinder approaches very close to the bottom, a jet-like flow appeared between the bottom of the rectangular cylinder and the channel. When the jet-like flow goes through the channel, surrounding fluids are sucked into this jet, forming the secondary vortices.

자유수면과 움직이는 벽면 사이에 놓인 원형 실린더 주위의 층류 유동구조 (Laminar Flow Structures Near a Circular Cylinder in between a Free-Surface and a Moving Wall)

  • 서장훈;정재환;윤현식;박동우;전호환
    • 대한조선학회논문집
    • /
    • 제49권3호
    • /
    • pp.213-221
    • /
    • 2012
  • The present study numerically investigates the interaction between a free-surface and flow around a circular cylinder over a moving wall. In order to simulate the flow past the circular cylinder over a moving wall near a free-surface, this study has adopted the direct-forcing/fictitious domain (DF/FD) method with the level set method in the Cartesian coordinates. Numerical simulation is performed for a Reynolds numbers of 100 in the range of $0.25{\leq}g/D{\leq}2.00$ and $0.5{\leq}h/D{\leq}2.00$, where g/D and h/D are the gaps between the cylinder and a moving wall and the cylinder and a free-surface normalized by cylinder diameter D, respectively. According to g/D and h/D, the vortex structures have been classified into three patterns of the two-row, one-row, steady elongation. In general, both of g/D and h/D have the large values which mean the cylinder is far away from the wall and the free-surface, two-row vortex structure forms in the wake. When g/D decreases, the two-row vortex structure gradually transfers into the one-row vortex structure. When the g/D reveals the critical value below which the flow becomes steady state, resulting in the steady elongation vortex.

Large eddy simulations of the flow around a circular cylinder: effects of grid resolution and subgrid scale modeling

  • Salvatici, E.;Salvetti, M.V.
    • Wind and Structures
    • /
    • 제6권6호
    • /
    • pp.419-436
    • /
    • 2003
  • Large-eddy simulations of the flow around a circular cylinder at a Reynolds number, based on cylinder diameter and free-stream velocity, $Re_D=2{\times}10^4$ are presented. Three different dynamic subgrid-scale models are used, viz. the dynamic eddy-viscosity model and two different mixed two-parameter models. The sensitivity to grid refinement in the spanwise and radial directions is systematically investigated. For the highest resolution considered, the effects of subgrid-scale modeling are also discussed in detail. In particular, it is shown that SGS modeling has a significant influence on the low-frequency modulations of the aerodynamics loads, which are related to significant changes in the near wake structure.

NUMERICAL ANALYSIS OF FLOW CHARACTERISTIC WITH DIFFERENT CORNER RADIUS OF SQUARE CYLINDER

  • Gao, Zhefeng;Sohn, Chang-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.315-319
    • /
    • 2010
  • The near wake of square section cylinders with different corner radii is studied by numerical method to investigate the influence of corner radius. Eight models, R/D=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 (R is the corner radius and D is the characteristic dimension of the body) at Re=500 were studied. The numerical results of St, CD and CL at R/D=0 and R/D=0.5 were compared with experiments to prove the feasibility and also investigate the trend of flow phenomena by the various radius corners. Results indicate that, as R/D ratio is increased, the Strouha lnumber is increased, the minimum pressure point on the cylinder surface moved own stream. The calculated results shows that between R/D=0.15 to R/D=0.3 have CD and CL.

  • PDF

후류가 익렬 유동에 미치는 영향에 대한 실험적 연구 (Study of the Effects of Wakes on Cascade Flow)

  • 김형주;조강래;주원구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.561-567
    • /
    • 2000
  • This paper is concerned with the viscous interaction between rotor and stator. The viscous interaction is caused by wakes from upstream blades. The rotor cascade in the experiment was composed with five blades, and cylinders were placed to make the stator wakes and their locations were about 50 percent upstream of blade chord. The locations of cylinders were varied in the direction of cascade axis with 0, 12.5, 25, 50, and 75 percent of pitch length. The static pressure distributions on the blade surfaces and the velocity distributions in the cascade flow were measured. From the experimental result it was found that the value of velocity defect by a cylinder wake might vary depending on the wake position within the cascade but the value at the cascade exit approached to some constant value regardless of the difference of wake locus. The momentum defect at the downstream from the cascade and the pressure distribution on the blade surfaces showed that the wake flowing near the blade surfaces caused the decrease of lift and the increase of drag regardless of the disappearance of flow separation.

  • PDF

Large Eddy Simulation of the flow around a finite-length square cylinder with free-end slot suction

  • Wang, Hanfeng;Zeng, Lingwei;Alam, Md. Mahbub;Guo, Wei
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.533-546
    • /
    • 2020
  • Large Eddy Simulation (LES) is used to study the effects of steady slot suction on the aerodynamic forces of and flow around a wall-mounted finite-length square cylinder. The aspect ratio H/d of the tested cylinder is 5, where H and d are the cylinder height and width, respectively. The Reynolds number based on free-stream oncoming flow velocity U and d is 2.78×104. The suction slot locates near the leading edge of the free end, with a width of 0.025d and a length of 0.9d. The suction coefficient Q (= Us/U) is varied as Q = 0, 1 and 3, where Us is the velocity at the entrance of the suction slot. It is found that the free-end steady slot suction can effectively suppress the aerodynamic forces of the model. The maximum reduction of aerodynamic forces occurs at Q = 1, with the time-mean drag, fluctuating drag, and fluctuating lift reduced by 3.75%, 19.08%, 40.91%, respectively. For Q = 3, all aerodynamic forces are still smaller than those for Q = 0 (uncontrolled case), but obviously higher than those for Q = 1. The involved control mechanism is successfully revealed, based on the comparison of the flow around cylinder free end and the near wake for the three tested Q values.

The Effect of Serrated Fins on the Flow Around a Circular Cylinder

  • Boo, Jung-Sook;Ryu, Byong-Nam;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.925-934
    • /
    • 2003
  • An experimental study is performed to investigate the characteristics of near wake flow behind a circular cylinder with serrated fins using a constant temperature anemometer and flow visualization. Various vortex shedding modes are observed. Fin height and pitch are closely related to the vortex shedding frequency after a certain transient Reynolds number. The through velocity across the fins decreases with increasing fin height and decreasing fin pitch. Vortex shedding is affected strongly by the velocity distribution just on top of the finned tube. The weaker gradient of velocity distribution is shown as increasing the freestream velocity and the fin height, while decreasing the fin pitch. The weaker velocity gradient delays the entrainment flow and weakens its strength. As a result of this phenomenon, vortex shedding is decreased. The effective diameter is defined as a virtual circular cylinder diameter taking into account the volume of fins, while the hydraulic diameter is proposed to cover the effect of friction by the fin surfaces. The Strouhal number based upon the effective diameters seems to correlate well with that of a circular cylinder without fins. After a certain transient Reynolds number, the trend of the Strouhal number can be estimated by checking the ratio of effective diameter to inner diameter. The normalized velocity and turbulent intensity distributions with the hydraulic diameter exhibit the best correlation with the circular cylinder's data.

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping

  • Borna, Amir;Habashi, Wagdi G.;McClure, Ghyslaine;Nadarajah, Siva K.
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.411-431
    • /
    • 2013
  • A computational study of vortex-induced transverse vibrations of a cylinder with low mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. The computational results are compared with published physical experiments and numerical studies. The maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles are also in agreement with experiments.

Serrated Fin Tube 후류에 대한 유동가시화 적용 및 근접후류 특성에 관한 연구 (An Experimental Study of Vortex Formation of a Circular Cylinder with Serrated Fins)

  • 부정숙;김경천;류병남
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.27-30
    • /
    • 2002
  • An experimental study is performed to investigate the characteristics of near wake behind a circular cylinder with serrated fins using the constant temperature anemometer and through flow visualization. Previous report(Boo at al., 2001) shows that there are three different modes in vortex shedding behavior. This paper is focused on the identification of the physical reasons why the difference is occured in vortex shedding. The through flow velocity crossing fins decreases as increasing fin height and decreasing fin pitch mainly due to the flow resistence. Vortex shedding is affected strongly by velocity distribution around fin tube, especially by the velocity gradient. The velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. Those differences in velocity gradients generate different vortex shedding mechanism.

  • PDF