• 제목/요약/키워드: cylinder near wake

검색결과 81건 처리시간 0.02초

PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (II)- 난류유동 특성 - (A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (II)- Turbulence Characteristics -)

  • 이만복;김경천
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1417-1426
    • /
    • 2001
  • Turbulent flow characteristics in the near wake of a square cylinder have been studied experimentally by using a Digital PIV method. Experiments are performed at the Reynolds numbers of 1600 and 3900 based on the free-stream velocity and the square height. The ensemble averaged turbulence statistics are acquired from 2030 realizations of instantaneous fluctuating velocity field after the conventional Reynolds decomposition. The differences in turbulent intensity and Reynolds shear stress profiles fur both oases indicate that the effect of Reynolds number seems to be descernible mainly due to the occurrence of transition in the separated shear layer. Because of the periodic nature of vortex shedding process, transverse velocity fluctuations contribute dominantly , to turbulent kinetic energy distribution. A comparison with previous LDV data obtained at much higher Reynolds number shows a fairly good agreement each other. It turns out that the effect of Reynolds number diminishes as increasing Reynolds number, which is a well-known feature of a sharp-edged bluff body wake. The streamwise variation of turbulence intensities are compared with those from a circular cylinder along the centerline at the same Reynolds number. The overall magnitudes and the decay rates of turbulence intensities are quite similar, but some differences are noticeble especially in the transverse intensity variation.

와류 격자법에 의한 수평축 풍력터빈의 공기역학적 성능예측 (Aerodynamic Performance Prediction of Horizontal Axis Wind Turbine by Vortex Lattice Method)

  • 유능수
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1264-1271
    • /
    • 1990
  • 본 연구에서는 회전 깃(rotor blade)을 폭 방향과 시위방향으로 많은 평면 페 널(panel)들로 나누어 이에 말굽쇠 형 화류(horseshoe vortex)를 분포시키는 양력면 (lifting surface)으로 대치하고 후류는 깃상의 순환(circulation)분포에 의해 그 크 기가 결정되는 와도(vorticity)를 와류격자로 대치하는 와류격자법(Vortex Lattice Method`VLM)을 사용하여 HAWT의 공기역학적 성능 예측을 시도하였다. 그리고 후류의 형상은 근 후류(near wake)와 원후류(far wake)로 나누어 근 후류는 깃의 후연(trail- ing edge)에서의 속도를 갖고 와선(vortex line)이 움직이게 하여 결정하였고 원 후류 는 반무한대 원형화류 실린더(semi-infinite circular vortex cylinder)로 취급하여 결정하였다.

Effect of lock-on frequency on vortex shedding in the cylinder wake

  • Yoo Jung Yul;Sung Jaeyong;Kim Wontae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.86-99
    • /
    • 2001
  • Vortex lock-on or resonance in the flow behind a circular cylinder is investigated from a time-resolved PIV when a single frequency oscillation is superimposed on the mean incident velocity. Measurements are made of the $K\acute{a}rm\acute{a}n$ and streamwise vortices in the wake-transition regime at the Reynolds number 360. Streamwise vortices at the lock-on and natural shedding states are observed, as well as the changes in the wake region with the change of the shedding frequency of lock-on state. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. At the lock-on state, the $K\acute{a}rm\acute{a}n$ vortices are observed to be more disordered by the increased strength and spanwise wavelength of the streamwise vortices, which leads to a strong three-dimensional motion. Recirculation and vortex formation region at the lock-on state is reduced as the oscillating frequency is increased. By comparing the Reynolds stresses at the lock-on and natural shedding states, $\bar{u'u'}\;and \;\bar{u'u'}$ at the lock-on state are concentrated on the shear layer around the cylinder. The $\bar{u'u'}\;at\;f_o/f_n=2.0$ has a large value near the centerline, compared with that of other cases. Considering the traces of maximum of u', in the wake region near the cylinder, wake width at the lock-on state is wider than that at the natural shedding state.

  • PDF

A-mode 불안정성 영역에서 교란유동장에 놓인 원형실린더 후류의 천이지연과 유동공진의 발생 (Suppression of Wake Transition and Occurrence of Lock-on Downstream of a Circular Cylinder in a Perturbed Flow in the A-mode Instability Regime)

  • 김수현;배종헌;유정열
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.702-710
    • /
    • 2007
  • Direct numerical simulation (DNS) is performed to investigate suppressed wake transition and occurrence of lock-on in the wake of a circular cylinder disturbed by sinusoidal perturbation at the Reynolds number of 220 (A-mode instability regime). The sinusoidal perturbation, of which the frequency is near twice the natural shedding frequency, is superimposed on the free stream velocity. It is shown that the wake transition behind the circular cylinder can be suppressed due to the perturbation of the free stream velocity. This change causes a jump in the Strouhal number from the value corresponding to A-mode instability regime to the value corresponding to retarded wake transition regime (extrapolated from laminar shedding regime) in the Strouhal-Reynolds number relationship. As a result, vortex shedding frequency is locked on the perturbation frequency depending not on the natural shedding frequency but on the modified shedding frequency.

원주의 근접후류에 대한 자유흐름 난류강도의 영향 (The effect of free stream turbulence on the near wake behind a circualr cylinder)

  • 김경천;정양범
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2062-2072
    • /
    • 1991
  • 본 연구에서는 역류의 측정과 원주의 근접 후류의 난류 구조에 미치는 자유흐 름 난류의 영향을 정성적 및 정량적으로 조사하기 위하여, 역류가 존재할 경우나 순간 유입각이 매우 큰 경우에도 난류의 측정이 가능한 split film probe(이하 SFP로 줄여 표기함)를 사용하여 평균 유동장과 난류의 2차 및 3차 모멘트의 변화, 속도 변동 상관 의 변화 및 대규모 와류의 유출 주파수 특성 등을 측정 분석하여, 격자에 의해 형성된 서로 다른 자유흐름 난류특성에 따른 실험 결과들을 비교 검토 해보고자 한다.

대기경계층 내에 놓인 자유단 원주의 형상비가 후류유동에 미치는 영향에 관한 연구 (Effect of Cylinder Aspect Ratio on Wake Structure Behind a Finite Circular Cylinder Located in an Atmospheric Boundary Layer)

  • 박철우;이상준
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1821-1830
    • /
    • 2001
  • The flow around free end of a finite circular cylinder (FC) embedded in an atmospheric boundary layer has been investigated experimentally. The experiments were carried out in a closed-return type subsonic wind tunnel with varying aspect ratio of the finite cylinder mounted vertically on a flat plate. The wakes behind a 2-D cylinder and a finite cylinder located in a uniform flow were measured for comparison. Reynolds number based on the cylinder diameter was about Re=20,000. A hot-wire anemometer was employed to measure the wake velocity and the mean pressure distributions on the cylinder surface were also measured. The flow past the FC free end shows a complicated three-dimensional wake structure and flow phenomenon is quite different from that of 2-D cylinder. The three-dimensional flow structure was attributed to the downwashing counter rotating vortices separated from the FC free end. As the FC aspect ratio decreases, the vortex shedding frequency decreases and the vortex formation length increases compared to that of 2-D cylinder. Due to the descending counter-rotating twin-vortex, near the FC free end, regular vortex shedding from the cylinder is suppressed and the vortex formation region is hardly distinguished. Around the center of the wake, the mean velocity for the FC located in atmospheric boundary layer has large velocity deficit compared to that of uniform flow.

Cinematic PIV에 의한 실린더 후류의 위상평균된 3차원 구조 (Phase-Locked Three-Dimensional Structures in the Cylinder Wake Observed from Cinematic PIV Data)

  • 성재용;박강국;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.661-666
    • /
    • 2000
  • Near-wake flow field of a circular cylinder is studied by means of a cinematic PIV system with high sampling rate and large internal memory block. Experiments are conducted in a closed-cycle water tunnel system and a cross-correlation algorithm in conjunction with FFT (Fast Fourier Transform) analysis and an offset correlation technique is used for vector processing. With the help of very high sampling frequency compared to the shedding frequency, it is possible to obtain phase-averaged information of the three-dimensional wake, even though the shedding is not forced but natural. Phase-locked vortical structures observed simultaneously from the spanwise and cross-stream planes are displayed in the wake-transition regime where fine-scale secondary vortices have a spanwise wavelength or around one diameter. Spatial relations and temporal evolutions of the primary Karman vortex and the secondary vortex are also discussed schematically.

  • PDF

삼차원 천이영역에서 원형 실린더 주위의 유동 (Flow over a Circular Cylinder in Three-Dimensional Transitional Regimes)

  • 김진성;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.956-961
    • /
    • 2003
  • Direct numerical simulations of flow over a circular cylinder are performed at two different Reynolds numbers (Re=220 and 300) that correspond to three-dimensional instabilities of mode A and mode B, respectively, to investigate the characteristics of drag and lift at these Reynolds numbers. The drag and lift coefficients are measured locally along the spanwise direction and their characteristics are studied in detail. The variation of total drag in time is large at Re=220, and the total drag becomes minimum when vortex dislocation occurs in the wake. The drag and lift variations in space are also closely associated with the evolution of vortex dislocation at this Reynolds number. At Re=300, vortex dislocation is not found in the wake and temporal variations of drag and lift are much smaller than those at Re=220, but their spatial variations are quite large due to the near-wake secondary vortices existing in the mode B instability.

  • PDF

Drag reduction of a circular cylinder at subcritical flow regime using base shield plates

  • El-Khairy, Nabil A.H.
    • Wind and Structures
    • /
    • 제6권5호
    • /
    • pp.347-356
    • /
    • 2003
  • Experimental studies on drag reduction of a circular cylinder of diameter D were conducted in the subcritical flow regime at Reynolds numbers in the range $4{\times}10^4{\leq}Re{\leq}10^5$. To shield the cylinder rear surface from the pressure deficit of the unsteady vortex generation in the near wake, two shield plates were attached downstream of the separation points to form a cavity at the base region. The chord of the shield plates, L, ranged from 0.22 to 1.52 D and the cavity width, G, was in the range from 0 to 0.96 D. It is concluded that significant drag reductions from that of a plain cylinder may be achieved by proper sizing of the shield plates and the base cavity. The study shows that using a pair of shield plates at G/D of 0.86 and angular position ${\theta}$ of ${\pm}121^{\circ}$ results in a configuration with percentage drag reduction of 40% for L/D of 0.5, and 55% for L/D of 1.0.

평판 가까이에 놓인 타원형 실린더 주위 유동에 관한 연구 (Flow Around an Elliptic Cylinder Placed Near a Plane Boundary)

  • 김성민;이상준
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2637-2649
    • /
    • 1996
  • Flow characteristics and aerodynamic forces acting on an elliptic cylinder placed in a plane boundary layer were investigated experimentally. Four cylinder models with axis ratio(major axis to minor axis, AR=A/B) of 1, 2, 3, and 4 having the same equivalent diameter were used in this experiment. The Reynolds number based on the equivalent diameter $D_e$(=20mm) was 13,000. In the case of circular cylinder, regular vortex shedding occurs for the cylinder gaps larger than G/B=0.3 and is not almost related to the boundary layer thickness. But, for the elliptic cylinders, the vortex shedding frequency is increased with increasing the gap ratio (G/B) and the axis ratio (AR) of elliptic cylinders. The maximum drag coefficient acting on a circular cylinder is mainly affected by the boundary layer thickness. But, the elliptic cylinders(AR$\geq$2), except for the smaller gap G/B<0.2, show a nearly constant drag coefficient which is much smaller than that of a circular cylinder. The base pressure on the flat plate decreases with increasing the axis ratio(AR) of the elliptic cylinder. In the case of a circular cylinder, the base pressure has the minimum value at the gap ratio G/B=0.4, but it occurs at G/D=2 for elliptic cylinders. The mean velocity of the cylinder wake is quickly recovered at a small cylinder height ratio(H/$\delta$), but the turbulent intensity is rapidly recovered at a large cylinder height ratio(H/$\delta$). The effective wake region in the plane boundary layer is shrinkaged with increasing the axis ratio(AR) of elliptic cylinder. And the drag coefficient and streamwise turbulent intensity of the elliptic cylinder with AR=4 are less than half of those for the circular cylinder(AR=1).