• Title/Summary/Keyword: cylinder bore

Search Result 62, Processing Time 0.02 seconds

Review of the Sealing on the Cylinder Head Gasket in the InternalCombustion Engine(1) (내연기관 실린더 헤드 가스켓의 밀봉에 관한 조사(1))

  • 오성환
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.4
    • /
    • pp.9-17
    • /
    • 1985
  • 엔진이 고성능화가 되어감에 따라 실린더 헤드 가스켓 재료나 밀봉(sealing) 구조가 계속해서 변 천되어 가고 있고 이는 엔진의 성능향상이 헤드 가스켓에 의해 크게 좌우된다는 것을 알려준다. 그러나 종래에는 헤드와 엔진보아(bore) 간의 밀봉문제가 가스켓만의 문제로 해서 검토하는 경우 가 많았다. 거기에다 검토 되어지는 것도 엔진의 개발 최종단계에서 이기 때문에 엔진을 개선할 수 없어 여러 가지 문제점을 가스켓이 부담하는 경우가 많았다. 그에 의한 무리한 대책은 나중 에 여러 가지 문제를 야기하는 결과를 가져다 준다. 그래서 여기서는 실린더 헤드 가스켓에 관 한 전반적인 내용을 서술하고자 한다.

  • PDF

Analysis of the Effects of Bore Clearance Due to Skirt Profile Changes on the Piston Secondary Movements

  • Jang, Siyoul
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.84-89
    • /
    • 2002
  • Clearance movements of engine piston are very related to the piston impact to the engine block as well as many tribological problems. Some of the major parameters that influence these kinds of performances are piston profiles, piston offsets and clearance magnitudes. In our study, computational investigation is performed about the piston movements in the clearance between piston and cylinder liner by changing the skirt profiles and piston offsets. Our results show that curved profile and more offset magnitude to thrust side have better performance that has low side impact during the engine cycle.

An Study on the Cylinder Wall Temperature and Performance of Gasoline Engine according to Engine Speed (가솔린기관의 회전수 변화에 따른 실린더 벽면온도 변화 및 기관성능에 관한 연구)

  • Kwon, K.R.;Oho, Y.O.;Kang, N.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The purpose of this study is preventing the stick, scuffing, scratch between piston and cylinder in advance, and obtaining data for duration test in actual engine operation. The temperature gradient in cylinder bore according to coolant temperature were measured using $1.5{\ell}$ class diesel engine. 20 thermocouples were installed 2mm deep inside from cylinder wall near top ring of piston in cylinder block, at which points major thermal loads exist. It is suggested as proper measurement points for engine design by industrial engineers. Under full load and $70^{\circ}$, $80^{\circ}C$ and $90^{\circ}C$ coolant temperature conditions, the temperature in cylinder block and engine oil increased gradually according to the increase of coolant temperature, the siamese side temperature of top dead center is $142^{\circ}C$ in peripheral distribution, that is about $20^{\circ}C$ higher than that at thrust, anti-thrust, and rear side temperature, respectively. The maximum pressure of combustion gas in $70^{\circ}C$ coolant temperature is about 2 bar lower than those of $80^{\circ}C$ and $90^{\circ}C$ coolant temperature. The engine torque in $80^{\circ}C$, $90^{\circ}C$ coolant temperature condition is about 4.9Nm higher than that of $70^{\circ}C$ coolant temperature.

  • PDF

A Study on the Hydrostatic Test of Slipper Pad for Hydraulic Piston Motor (유압 피스톤모터용 Slipper Pad의 정압시험에 관한 연구)

  • 함영복;김광영;김형의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.645-649
    • /
    • 1997
  • In case of swash plate type axial piston hydraulic motor, hydrostatic bearing used to achieve the lubrication effect on the mechanical sliding contact areas between the following parirs ; sliooer-pad and swash plate,piston and cylinder bore,valve plate and cylinder block, etc. This study discussed the basic charateristic for the hydrostatic slipper-pad bearings with the capillary or orifice restrictor under static load condition. And, we also development of hydrostatic bearing tester for hydrostatic balancing test of pistion & slipper-pad assembly, and some experimental data on supply pressure step responce are reported.

  • PDF

A Study on Ring Face and Groove Wear during Engine Durability Test (엔진 내구시험 시 링 외주면 및 그루브 마모에 관한 연구)

  • Chun Sang-Myung
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.211-217
    • /
    • 2006
  • Ring and groove wear may not be a problem in most current automotive engines. However, a small change in ring face and groove geometry can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings and grooves are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be at the lower bound of aver-aged test values or a little below.

A Study on Main Engine X-mode Vibration Phenomenon due to 2nd Node Torsional Vibration of the Marine Propulsion System (선박 추진축계의 2절 비틀림진동에 기인한 주기관 X-모드 진동 현상의 연구)

  • Lee, Donchool;Kim, Junseong;Kim, Jinhee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.9
    • /
    • pp.806-813
    • /
    • 2013
  • For the past years, higher power rating 2 stroke super long stroke diesel engines having more than 8 cylinders and larger cylinder bore are installed mainly on very large containerships to save on fuel consumption. However, these engines are prone to X-mode vibration due to 2nd node torsional vibration or the X-type moment, particularly because of the increase in total length and height. Recently, cases of excessive X-mode vibration often occurred on engine's major components. This vibration is manifested also as secondary vibration causing failure in engine-mount large structures. This study investigated the excitations caused by the 2nd node propulsion shafting torsional vibration that influence X-mode vibration of the main engine and practical countermeasures are proposed. An 8RT-flex82T 8 cylinder engine and 11S90ME-C 11 cylinder engine for a container ship was used as research model.

Experimental Analysis to Behavior of Swivel Angle in Bent-axis type Oil Hydraulic Piston Pump for Heavy Vehicle (대형차량용 사축식 유압 피스톤 펌프의 경전각 거동에 따른 실험적 해석)

  • Beak, I.H.;Cho, I.S.;Jung, J.Y.;Oh, S.H.;Jung, S.H.;Jang, D.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.2
    • /
    • pp.13-18
    • /
    • 2010
  • To improve the performance of the bent-axis type axial piston pump driven by the tapered piston, it is necessary to know the driving characteristics and mechanism of the tapered piston and the cylinder block. Since each piston not only rotates on its axis and reciprocates in the cylinder bore, but also revolves around the axis of the driving shaft, it is difficult to analyze the driving mechanism theoretically. The theoretical mechanism for the bent-axis type axial piston pump is studied by using the geometrical method. The driving range of the tapered piston is determined by theoretical equations. The experimental results show that the cylinder block is driven by one tapered piston in a limited range and the core parameters such as driving factor of the piston and the ahead delay angle influenced performance of the bent-axis type axial piston pump.

  • PDF

Main Engine Upper Structural Vibration Phenomenon due to 2nd Node Torsional Vibration and Countermeasures on the Marine Propulsion System (선박 추진축계의 2절 비틀림 진동에 기인한 주 기관 상부 구조 진동현상과 방진 대책)

  • Lee, Donchool;Kim, Junseong;Kim, Jinhee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.549-554
    • /
    • 2013
  • For the past years, higher power rating 2 stroke super long stroke diesel engines having more than 8 cylinders and larger cylinder bore are installed mainly on very large containerships to save on fuel consumption. However, these engines are prone to X-mode vibration due to $2^{nd}$ node torsional vibration or the X-type moment, particularly because of the increase in total length and height. Recently, cases of excessive X-mode vibration often occurred on engine's major components. This vibration is manifested also as secondary vibration causing failure in engine-mount large structures. This study investigated the excitations caused by the $2^{nd}$ node propulsion shafting torsional vibration that influence X-mode vibration of the main engine and practical countermeasures are proposed. An 8RT-82RT-flex 8 cylinder engine and 11S90S-ME 11 cylinder engine for a container ship was used as research model.

  • PDF

Study on Evaluation Method of Flow Characteristics in Steady Flow Bench(2) - Comparison of ISM and PIV Measurement (정상유동 장치에서 유동 특성 평가 방법에 대한 연구(2) - ISM와 PIV 측정의 비교)

  • Park, Chanjun;Ohm, Inyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.139-147
    • /
    • 2015
  • This paper is the second investigation on the evaluation methods of flow characteristics in a steady flow bench. In the previous work, several assumptions used in the steady flow bench were examined and it was concluded that the assumption of the solid rotation might cause serious problems. In this study, intake valve angle is selected as a main parameter for the assessment because the main flow direction to cylinder governed by this angle has the strongest influence on the in-cylinder flow pattern. For this purpose, four heads, which have the different angle, are prepared and the flow characteristics are estimated both by the conventional impulse swirl meter and a particle image velocimetry at 1.75 times bore position apart from the cylinder head, which is widely used plane in the steady flow measurement. The results show that both of the eccentricity and the velocity profile distort the flow characteristics when using the ISM at 1.75 plane, however, the effects of two factors act in the opposite direction. In addition, the profile's influence is much greater than that of the eccentricity.

Design Methodology of Main Bearing Cap by a Finite Element Analysis (베어링 캡 유한 요소 해석 설계 방법)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.80-86
    • /
    • 2009
  • Main bearing cap is one of the essential structural elements in internal combustion engine. Main bearing cap guides and holds the crankshaft, withstanding the full combustion and inertia loads of the engine. A seamless design methodology using FEA has been proposed to produce a reliable design of main bearing cap. A Levy's thick cylinder model was applied to calculate the contact pressure between bearing shell and housing bore. A calculated contact pressure at housing bore is within the allowed limit comparing with that from bearing shell model. An adequate FEA model was suggested to obtain reliable solutions for the durability of main bearing cap. 3D global model consists of engine bulkhead, main bearing cap, and bolts. Sub-model consisting of cap and part of bolts is used to get detailed solution of main bearing cap. A very careful contact modeling practice is needed to resolve the convergence problems frequently encountering during combined geometric and material non-linear problems. A proposed methodology has been applied to the main bearing cap model successfully and obtained reliable stress results and fatigue safety factors.