• 제목/요약/키워드: cyclosporin A

검색결과 185건 처리시간 0.023초

The Effect of Cyclosporin A on Osteoblast in vitro

  • Choi, Kyung-Hee;Kim, Jae-Woo;Lee, Hyun-Jung;Kang, Jung-Hwa;Kim, Chang-Sung;Yoo, Yun-Jung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • 대한치주과학회:학술대회논문집
    • /
    • 대한치주과학회 2001년도 제41회 종합학술대회 연제초록
    • /
    • pp.107-107
    • /
    • 2001
  • PDF

마우스 동종 조혈모세포 이식모델에서 Cyclosporin A, FK506, 3-Deazaadenosine 등의 약제가 급성 이식편대 숙주병과 생존에 미치는 영향 (Effects of Cyclosporin A, FK506, and 3-Deazaadenosine on Acute Graft-versus-host Disease and Survival in Allogeneic Murine Hematopoietic Stem Cell Transplantation)

  • 진종률;정대철;엄현석;정낙균;박수정;최병옥;민우성;김학기;김춘추;한치화
    • IMMUNE NETWORK
    • /
    • 제3권2호
    • /
    • pp.150-155
    • /
    • 2003
  • Background: We investigated the effect of donor marrow T cell depletion, administration of FK506, cyclosporin A (CSA), and 3-deazaadenosine (DZA) on graft versus host disease (GVHD) after allogeneic murine hematopoietic stem cell transplantation (HSCT). Methods: We used 4 to 6 week old Balb/c ($H-2^d$, recipient), and C3H/He ($H-2^k$, donor) mice. Total body irradiated recipients received $1{\times}10^7$ bone marrow cells (BM) and $0.5{\times}10^7$ splenocytes of donor under FK506 (36 mg/kg/day), CSA (5 mg/kg/day, 20 mg/kg/day), and DZA (45 mg/kg/day), which were injected intraperitoneally from day 1 to day 14 daily and then three times a week for another 2 weeks. To prevent the GVHD, irradiated Balb/c mice were transplanted with $1{\times}10^7$ rotor-off (R/O) cells of donor BM. The severity of GVHD was assessed daily by clinical scoring method. Results: All experimental groups were well grafted after HSCT. Mice in experimental group showed higher GVHD score and more rapid progression of GVHD than the mice with R/O cells (R/O group) (p<0.01). There were relatively low GVHD scores and slow progressions in FK506 and low dose CSAgroups than high dose CSA group (p<0.01). The survival was better in FK506 group than low dose CSA group. All mice treated with CSA died within 12 days after HSCT. The GVHD score in DZA group was low and slow in comparison with control group (p<0.05), but severity and progression were similar with low dose CSA group (p=0.11). All mice without immunosuppressive treatment died within 8 days, but all survived in R/O group (p<0.01). Survival in low dose CSA group was longer than in control group (p<0.05), but in high dose CSA group, survival was similar to control group. The survival benefit in DZA group was similar with low dose CSA group. FK506 group has the best survival benefit than other groups (p<0.01), comparable with R/O group (p=0.18), although probability of survival was 60%. Conclusion: We developed lethal GVHD model after allogeneic murine HSCT. In this model, immunosuppressive agents showed survival benefits in prevention of GVHD. DZA showed similar survival benefits to low dose CSA. We propose that DZA can be used as a new immunosuppressive agent to prevent GVHD after allogeneic HSCT.

Increase in Intracellular Calcium is Necessary for RANKL Induction by High Extracellular Calcium

  • Jun, Ji-Hae;Kim, Hyung-Keun;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • 제30권1호
    • /
    • pp.9-15
    • /
    • 2005
  • Recently, we reported that high extracellular calcium increased receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) expression via p44/42 mitogen-activated protein kinase (p44/42 MAPK) activation in mouse osteoblasts. However, the mechanism for p44/42 MAPK activation by high extracellular calcium is unclear. In this study, we examined the role of intracellular calcium increase in high extracellular calcium-induced RANKL induction and p44/42 MAPK activation. Primary cultured mouse calvarial osteoblasts were used. RANKL expression was highly induced by 10 mM calcium treatment. Ionomycin, a calcium ionophore, also increased RANKL expression and activated p44/42 MAPK. U0126, an inhibitor of MEK1/2, an upstream activator of p44/42 MAPK, blocked the RANKL induction by both high extracellular calcium and ionomycin. High extracellular calcium increased the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), one of the known upstream regulators of p44/42 MAPK activation. Bisindolylmaleimide, an inhibitor of protein kinase C, did not block RANKL induction and p44/42 MAPK activation induced by high extracellular calcium. 2-Aminoethoxydiphenyl borate, an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor, blocked the RANKL induction by high extracellular calcium. It also partially suppressed the activation of Pyk2 and p44/42 MAPK. Cyclosporin A, an inhibitor of calcineurin, also inhibited high calcium-induced RANKL expression in dose dependent manner. However, cyclosporin A did not affect the activation of Pyk2 and p44/42 MAPK by high extracellular calcium treatment. These results suggest that 1) the increase in intracellular calcium via IP3-mediated calcium release is necessary for RANKL induction by high extracellular calcium treatment, 2) Pyk2 activation, but not protein kinase C, following the increase in intracellular calcium might be involved in p44/42 MAPK activation, and 3) calcineurin-NFAT activation by the increase in intracellular calcium is involved in RANKL induction by high extracellular calcium treatment.

Effects of Mitochondrial Reactive Oxygen Species on Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae-In;Park, A-Reum;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • 제37권1호
    • /
    • pp.17-23
    • /
    • 2012
  • Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, and that mitochondria are the main source of ROS in the spinal dorsal horn. To investigate whether mitochondrial ROS can induce changes in membrane excitability on spinal substantia gelatonosa (SG) neurons, we examined the effects of mitochondrial electron transport complex (ETC) substrates and inhibitors on the membrane potential of SG neurons in spinal slices. Application of ETC inhibitors, rotenone or antimycin A, resulted in a slowly developing and slight membrane depolarization in SG neurons. Also, application of both malate, a complex I substrate, and succinate, a complex II substrate, caused reversible membrane depolarization and enhanced firing activity. Changes in membrane potential after malate exposure were more prominent than succinate exposure. When slices were pretreated with ROS scavengers such as phenyl-N-tert-buthylnitrone (PBN), catalase and 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), malate-induced depolarization was significantly decreased. Intracellular calcium above $100{\mu}M$ increased malateinduced depolarization, witch was suppressed by cyclosporin A, a mitochondrial permeability transition (MPT) inhibitor. These results suggest that enhanced production of spinal mitochondrial ROS can induce nociception through central sensitization.

Characterization of Protein Kinases Activated during Treatment of Cells with Okadaic Acid

  • Bogoyevitch, Marie A.;Thien, Marilyn;Ng, Dominic C.H.
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.517-525
    • /
    • 2001
  • Six renaturable protein kinases that utilize the myelin basic protein (MBP) as a substrate were activated during prolonged exposure of cardiac myocytes to okadaic acid (OA). We characterized the substrate preference and activation of these kinases, with particular emphasis on 3 novel kinases-MBPK-55, MBPK-62 and MBPK-87. The transcription factors c-Jun, Elk, ATF2, and c-Fos that are used to assess mitogen-activated protein kinase activation were all poor substrates for these three kinases. MAPKAPK2 was also not phosphorylated. In contrast, Histone IIIS was phosphorylated by MBPK-55 and MBPK-62. These protein kinases were activated in cultured cardiac fibroblasts, H9c2 cardiac myoblasts, and Cos cells. High concentrations (0.5 to $1\;{\mu}M$) of OA were essential for the activation of the protein kinases in all of the cell types examined, whereas calyculin A [an inhibitor of protein phosphatase 1 (PP1) and PP2A], cyclosporin A (a PP2B inhibitor), and an inactive OA analog all failed to activate these kinases. The high dose of okadaic acid that is required for kinase activation was also required for phosphatase inhibition, as assessed by immunoblotting whole cell lysates with anti-phosphothreonine antibodies. A variety of chemical inhibitors, including PD98059 (MEK-specific), genistein (tyrosine kinase-specific) and Bisindolylmaleimide I (protein kinase C-specific), failed to inhibit the OA activation of these kinases. Thus, MBPK-55 and MBPK-62 are also Histone IIIS kinases that are widely expressed and specifically activated upon exposure to high OA concentrations.

  • PDF

Strain Improvement and Genetic Characterization of Tautomycetin Biosynthesis in Streptomyces spp.

  • Choi, Si-Sun;Kim, Myung-Gun;Kim, Eung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.420-422
    • /
    • 2005
  • TMC (Tautomycetin) is a liner polyketide immunosuppressive antifungal compound produced by Streptomyces spp. Inhibition of T cell proliferation with TMC was observed highly efficient at 100-fold lower than those needed to achieve maximal inhibition with cyclosporin A. To elucidate the biosynthetic pathway of TMC, a genomic DNA library was constructed using a E. coil-Streptomyces shuttle cosmid vector, pOJ446. The DNA libraries were screened by colony blot hybridization using several polyketide ${\beta}-ketosynthase$ (KS) probes amplified from TMC-producing Streptomyces genomic DNA using polymerase chain reaction (PCR), of which the degenerate primers were designed based on the highly conserved sequences present in KS domains of various type I polyketide synthase genes in Streptomyces species. This library construction and screening approach led to the isolation of several positive cosmid clones representing type I polyketide biosynthetic gene clusters. In addition, a Streptomyces regulatory gene called afsR2 (a global regulatory gene stimulating antibiotic production in both S. coelicolor and S. lividans) was successfully integrated into the TMC-producing Streptomyces chromosome via E. coil-Streptomyces heterologous conjugation mehtod. The more detailed results of production improvement and genetic characterization of TMC-producing Streptomyces spp. will be discussed.

  • PDF

Cloning and characterization of Giardia intestinalis cyclophilin

  • Yu, Hak-Sun;Kong, Hyun-Hee;Chung, Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • 제40권3호
    • /
    • pp.131-138
    • /
    • 2002
  • The cyclophilins (Cyps) are family members of proteins that exhibit peptidylprolyl cis-trans isomerase (PPIase, EC 5.2.1.8) activity and bind the immunosuppressive agent cyclosprin A (CsA) in varying degrees. During the process of random sequencing of a cDNA library made from Giardia intestinalis WB strain, the cyclophilin gene (gicypl) was isolated. An open reading frame of gicyp1 gene was 576 nucleotides, which corresponded to a translation product of 176 amino acids (Gicypl). The identity with other Cyps was about 58-71%. The 13 residues that constituted the CsA binding site of human cyclophilin were also detected in the amino acid sequence of Gicypl, including tryptophan residue essential for the drug binding. The single copy of the gicypl gene was detected in the G. intestinalis chromosome by southern hybridization analysis. Recombinant Gicyp 1 protein clearly accelerated the rate of cis ${\rightarrow}$ trans isomerization of the peptide substrate and the catalysis was completely inhibited by the addition of $0.5{\;}{\mu}M$ CsA.

A Patient with Henoch-Schönlein Purpura with Intussusception and intractable Nephritis

  • Seo, Min Kyoung;Hong, Jeong;Yim, Hyun Ee;Pai, Ki Soo
    • Childhood Kidney Diseases
    • /
    • 제20권2호
    • /
    • pp.92-96
    • /
    • 2016
  • Henoch-$Sch{\ddot{o}}nlein$ purpura (HSP) is the most common vasculitis in children, mainly affecting the small vessels of the skin, joints, gastrointestinal tract, and kidneys. Although most cases of HSP resolve spontaneously without sequelae, serious nephrological and intestinal problems may occur in some cases. We experienced a case of HSP complicated by simultaneous intussusception and nephritis in a 14-year-old boy who developed a sudden abdominal pain and gross hematuria on the 11th day after onset of the disease. Imaging studies revealed intussusception that required emergency laparotomy. Despite treatment with steroid and angiotensin-converting enzyme inhibitors, nephritis and nephrosis progressed for 4 weeks, and renal biopsy was performed to confirm the diagnosis. Cyclosporin A therapy was started, and remission of proteinuria was achieved after 5 months. However, the nephritis recurred and worsened to end-stage renal failure during 15 years of follow-up.

Immunosuppressive Characteristics of Oligomycin Derivatives Produced by Streptomyces lydicus MCY-524

  • Lee, Sang-Yong;Han, Sang-Bae;Kim, Hang-Sub;Kim, Young-Ho;Kim, Hwan-Mook;Kim, Chang-Jin;Hong, Soon-Duck;Lee, Jung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제7권1호
    • /
    • pp.56-61
    • /
    • 1997
  • A strain producing immunosuppressive substances was isolated from a soil in Cheju island. By morphological, cultural, and physiological studies, the strain was identified as Streptomyces lydicus MCY-524. Cultured broth was purified by silica gel, sephadex LH-20 and preparative HPLC and gave two immunosuppressive compounds, MCH-22 and MCH-32. They dramatically suppressed the B cell activation with lipopolysaccharide, T cell activation by mixed lymphocyte response, and primary T-dependent antibody response at a final concentration of 1 ${\mu}g$/ml. They also markedly suppressed the proliferation of lymphocytes induced by lipopolysaccharide, pokeweed mitogen, and concanavaline A at the same concentration. Their suppressive activities, which were comparable to those of cyclosporin A, suggested that they were potent and broad immunotoxic agents on the immune functions of murine lymphocytes.

  • PDF