• 제목/요약/키워드: cyclooxygenase-II

검색결과 69건 처리시간 0.021초

p38 Kinase Regulates Nitric Oxide-induced Dedifferentiation and Cyclooxygenase-2 Expression of Articular Chondrocytes

  • Yu, Seon-Mi;Cheong, Seon-Woo;Cho, Sam-Rae;Kim, Song-Ja
    • IMMUNE NETWORK
    • /
    • 제6권3호
    • /
    • pp.117-122
    • /
    • 2006
  • Background: Caveolin, a family of integral membrane proteins are a principal component of caveolae membranes. In this study, we investigated the effect of p38 kinase on differentiation and on inflammatory responses in sodium nitroprusside (SNP)-treated chondrocytes. Methods: Rabbit articular chondrocytes were prepared from cartilage slices of 2-week-old New Zealand white rabbits by enzymatic digestion. SNP was used as a nitric oxide (NO) donor. In this experiments measuring SNP dose response, primary chondrocytes were treated with various concentrations of SNP for 24h. The time course of the SNP response was determined by incubating cells with 1mM SNP for the indicated time period $(0{\sim}24h)$. The cyclooxygenase-2 (COX-2) and type II collagen expression levels were determined by immunoblot analysis, and prostaglandin $E_2\;(PGE_2)$ assay was used to measure the COX-2 activity. The tyrosine phosphorylation of caveolin-1 was determined by immunoblot analysis and immunostaining. Results: SNP treatment stimulated tyrosine phosphorylation of caveolin-1 and activation of p38 kinase. SNP additionally caused dedifferentiation and inflammatory response. We showed previously that SNP treatment stimulated activation of p38 kinase and ERK-1/-2. Inhibition of p38 kinase with SB203580 reduced caveolin-1 tyrosine phosphorylation and COX-2 expression but enhanced dedifferentiation, whereas inhibition of ERK with PD98059 did not affect caveolin-1 tyrosine phosphorylation levels, suggesting that ERK at least is not related to dedifferentiation and COX-2 expression through caveolin-1 tyrosine phosphorylation. Conclusion: Our results indicate that SNP in articular chondrocytes stimulates dedifferentiation and inflammatory response via p38 kinase signaling in association with caveolin-1 phosphorylation.

The Efficiency of Deer Antler Herbal Acupuncture on Modulation and Prevention of IL-1 Mediated Activation in Rat Chondrocytes at a Receptor Level

  • Kim, Woo-Young;Lee, Seung-Deok;Kim, Kyung-Ho;Baek, Seung-Tae;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • 제23권2호
    • /
    • pp.113-123
    • /
    • 2006
  • Objectives : Deer antler Herbal-Acupuncture (DHA) solution represents one of the most commonly used medicine to treat rheumatoid arthritis. But, mechanisms of its antiarthritic activities are still poorly understood. Identification of common DHA aqua-acupuncture capable of affording protection or modulating the onset and severity of arthritis may have important human health implications. Results : We determined if DHA could prevent the binding of $IL-1{\beta}$ to its cellular receptors. DHA addition to rat chondrocytes treated with $IL-1{\beta}$ or with reactive oxygen species(ROS) prevents the activation of proteoglycan synthesis. After treatment with $IL-1{\beta}$, DHA increased the expression of mRNA encoding the type II $IL-1{\beta}$ receptor. These results emphasize the potential role of two regulating proteins of the $IL-1{\beta}$ signaling pathway that could account for the beneficial effect of DHA in osteRArthritis. The present study also identifies a novel mechanism of DHA-mediated anti-inflammatory activity. Conclusion : It is shown that DHA inhibits both $IL-1{\beta}-$ and $TNF-{\alpha}-induced$ NO production in normal human articular chondrocytes. The observed suppression of IL-1-induced NO production is associated with inhibition of inducible NO synthase(iNOS) mRNA and protein expression. In addition, DHA also suppresses the production of IL-1-induced cyclooxygenase-2 and IL-6. The constitutively expressed cyclooxygenase-1, however, was not affected by the sugar. These results demonstrate that DHA expresses a unique range of activities and identifies a novel mechanism for the inhibition of inflammatory processes.

  • PDF

Ginsenoside Rp1, a Ginsenoside Derivative, Blocks Promoter Activation of iNOS and COX-2 Genes by Suppression of an IKKβ-mediated NF-κB Pathway in HEK293 Cells

  • Shen, Ting;Lee, Jae-Hwi;Park, Myung-Hwan;Lee, Yong-Gyu;Rho, Ho-Sik;Kwak, Yi-Seong;Rhee, Man-Hee;Park, Yung-Chul;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.200-208
    • /
    • 2011
  • Ginsenoside (G) $Rp_1$ is a ginseng saponin derivative with anti-cancer and anti-inflammatory activities. In this study, we examined the mechanism by which G-$Rp_1$ inhibits inflammatory responses of cells. We did this using a strategy in which DNA constructs containing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) promoters were transfected into HEK293 cells. G-$Rp_1$ strongly inhibited the promoter activities of COX-2 and iNOS; it also inhibited lipopolysaccharide induced upregulation of COX-2 and iNOS mRNA levels in RAW264.7 cells. In HEK293 cells G-$Rp_1$ did not suppress TANK binding kinase 1-, Toll-interleukin-1 receptor-domain-containing adapter-inducing interferon-${\beta}$ (TRIF)-, TRIF-related adaptor molecule (TRAM)-, or activation of interferon regulatory factor (IRF)-3 and nuclear factor (NF)-${\kappa}$B by the myeloid differentiation primary response gene (MyD88)-induced. However, G-$Rp_1$ strongly suppressed NF-${\kappa}$B activation induced by I${\kappa}$B kinase (IKK)${\beta}$ in HEK293 cells. Consistent with these results, G-$Rp_1$ substantially inhibited IKK${\beta}$-induced phosphorylation of $I{\kappa}B{\alpha}$ and p65. These results suggest that G-$Rp_1$ is a novel anti-inflammatory ginsenoside analog that can be used to treat IKK${\beta}$/NF-${\kappa}$B-mediated inflammatory diseases.

구인(蚯蚓) 추출물이 흰쥐의 뇌허혈과 세포에 미치는 효과 (Effects of Lumbricus Extract on Cerebral Ischemia and Cells in Rats)

  • 유덕선;염승룡;권영달;송용선
    • 한방재활의학과학회지
    • /
    • 제20권3호
    • /
    • pp.1-11
    • /
    • 2010
  • Objectives : This study was designed to investigate the effects of Lumbricus extract(LE) on the regional cerebral blood flow(rCBF) in ischemic rats, further to determine the mechanism of action of LE, and the effects that LE inhibits lactate dehydrogenase(LDH) activity in brain cells. Methods and materials : This study, ischemic rats were divided into total four group: control group(n=6), experimental group I (LE treated group)(n=6), experimental group II(LE treated group after pretreatment with indomethacin)(n=6), experimental group III(LE treated group after pretreatment with methylene blue)(n=6). And the measurement that LE inhibits LDH activity in the damage to brain cells to N-methyl-D-aspartic acid(NMDA). The changes of rCBF were determinated by laser-doppler flowmetry(LDF), and LDH activity was determinated by microplate reader in vitro. Results : 1. The rCBF was significantly improved by LE(10 mg/kg, i.p.) during the period of cerebral reperfusion, compared with the control group. 2. The rCBF was significantly increased by LE after pretreatment with indomethacin(1 mg/kg, i.p.), an inhibitor of cyclooxygenase, during the period of cerebral reperfusion, compared with the LE group, and rCBF was accelerated by LE after pretreatment with methylene blue($10{\mu}g/kg$, i.p.) an inhibitor of guanylate cyclase during the period of cerebral reperfusion, compared with the control group. 3. LE significantly inhibited LDH activity in vitro in a dose-dependent manner. Conclusions : From the above results, these were suggested that Lumbricus had anti-ischemia action in connection with cyclooxygenase and might prevent the brain cells death through inhibited LDH activity.

청견 잎 에탄올 추출물의 NF-𝜅B와 MAPK 조절을 통한 항염증 효과 (Anti-inflammatory Effects of Kiyomi (Citrus unshiu × C. sinensis) Leaf Ethanol Extract Via the Regulation of NF-𝜅B and MAPKs in LPS Induced RAW 264.7 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제11권3호
    • /
    • pp.159-169
    • /
    • 2023
  • Purpose : Though other Citrus spp. have reported their anti-inflammatory and antioxidative activities in previous studies, the biological activity of Kiyomi (Citrus unshiu × C. sinensis) has not been reported yet. Therefore, this study attempted to analyze the anti-inflammatory mechanisms of Kiyomi leaf ethanol extract (KLEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : The cytotoxic effect of KLEE in RAW 264.7 cells was determined by WST-1 assay. Bacterial endotoxin, the concentration of nitric oxide (NO) was analyzed by the Griess reaction. In addition, Western blot analysis was applied to measure the protein expression level of inducible NO synthase (iNOS). The phosphorylated status of the critical inflammatory transcription factor, nuclear factor (NF)-𝜅B, and its upstream signaling molecules, phosphoinositide 3-kinase (PI3K)/Akt as well as mitogen-activated protein kinases (MAPKs), were also measured by Western blot analysis. Results : KLEE was not cytotoxic up to a concentration of 200 ㎍/㎖, and protein expression levels of iNOS and cyclooxygenase (COX)-2, enzymes that counteract NO and prostaglandin (PG) E2 production, were inhibited by KLEE treatment. The phosphorylated status of PI3K/Akt as well as MAPKs including extracellular regulated kinase (ERK), c-jun NH2kinase (JNK), and p38, were significantly attenuated by KLEE treatment in LPS stimulated RAW 264.7 cells. Moreover, one of phase II enzymes, heme oxygenase (HO)-1 which has known for its anti-inflammatory capacity, was strongly induced by KLEE treatment. Conclusion : Consequently, KLEE treatment significantly attenuated the production of NO as well as the expression levels of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-𝜅B, as well as its upstream signaling molecules, PI3K/Akt and MAPKs, were also diminished by KLEE treatment with statistical significance in LPS-stimulated RAW 264.7 cells. These results suggest that KLEE might be a promising candidate for the attenuation of inflammatory disorders.

Luteolin and luteolin-7-O-glucoside protect against acute liver injury through regulation of inflammatory mediators and antioxidative enzymes in GalN/LPS-induced hepatitic ICR mice

  • Park, Chung Mu;Song, Young-Sun
    • Nutrition Research and Practice
    • /
    • 제13권6호
    • /
    • pp.473-479
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Anti-inflammatory and antioxidative activities of luteolin and luteolin-7-O-glucoside were compared in galactosamine (GalN)/lipopolysaccharide (LPS)-induced hepatitic ICR mice. MATERIALS/METHODS: Male ICR mice (6 weeks old) were divided into 4 groups: normal control, GalN/LPS, luteolin, and luteolin-7-O-glucoside groups. The latter two groups were administered luteolin or luteolin-7-O-glucoside (50 mg/kg BW) daily by gavage for 3 weeks after which hepatitis was induced by intraperitoneal injection of GalN and LPS (1 g/kg BW and $10{\mu}g/kg\;BW$, respectively). RESULTS: GalN/LPS produced acute hepatic injury by a sharp increase in serum AST, ALT, and $TNF-{\alpha}$ levels, increases that were ameliorated in the experimental groups. In addition, markedly increased expressions of cyclooxygenase (COX)-2 and its transcription factors, nuclear factor $(NF)-{\kappa}B$ and activator protein (AP)-1, were also significantly attenuated in the experimental groups. Compared to luteolin-7-O-glucoside, luteolin more potently ameliorated the levels of inflammatory mediators. Phase II enzymes levels and NF-E2 p45-related factor (Nrf)-2 activation that were decreased by GalN/LPS were increased by luteolin and luteolin-7-O-glucoside administration. In addition, compared to luteolin, luteolin-7-O-glucoside acted as a more potent inducer of changes in phase II enzymes. Liver histopathology results were consistent with the mediator and enzyme results. CONCLUSION: Luteolin and luteolin-7-O-glucoside protect against GalN/LPS-induced hepatotoxicity through the regulation of inflammatory mediators and phase II enzymes.

우렁쉥이(Halocynthia roretzi) 껍질로부터 분리된 다당류의 면역증강 효과 (Immune-Enhancing Effects of Polysaccharides Isolated from Ascidian (Halocynthia roretzi) Tunic)

  • 이대훈;홍주헌
    • 한국식품영양과학회지
    • /
    • 제44권5호
    • /
    • pp.673-680
    • /
    • 2015
  • 본 연구에서는 우렁쉥이 껍질 유래 다당류의 기능성식품 소재로의 활용 가능성을 확인하기 위하여 조다당류의 분리 및 정제를 통해 획분을 얻었으며 다양한 면역증강 효과를 확인하였다. 건조된 조다당류를 DEAE-sepharose CL-6B를 이용하여 크로마토그래피한 후 총당 및 uronic acid 함량을 분석한 결과, 증류수로 용출되는 비흡착 획분(APF-I, fraction No. 11~17)과 흡착된 후 NaCl 용액에 의해 용출되는 획분(APF-II, fraction No. 22~37)을 얻었다. 정제된 APF-I 및 APF-II의 이화학적 특성으로 총당 함량은 각각 66.62%, 27.03%, uronic acid 함량은 47.53%, 15.87%, hexosamine 함량은 16.62%, 46.79% 및 단백질 함량은 2.43%, 4.94%로 나타났다. APF-I 및 APF-II에 대해 RAW 264.7 세포에 처리하여 독성을 평가한 결과 $5{\mu}g/mL$ 농도까지 유의적으로 세포사멸이 나타나지 않아 세포독성이 없음을 확인할 수 있었다. Nitric oxide 생산량은 APF-I이 $5{\mu}g/mL$ 농도에서 $22.23{\mu}m$ 함량을 나타내어 LPS 대비 73.48%로 타 구간에 비해 높은 생성량을 나타내었으며, cytokine 생성량(TNF-${\alpha}$ 및 IL-6) 또한 APF-I $5{\mu}g/mL$ 농도에서 각각 LPS 대비 104%, 100.1%를 나타내어 LPS와 유사한 생성량을 나타내었다. Polymerase chain reaction을 통한 면역관련 유전자 발현 분석 결과, iNOS, COX-2, TNF-${\alpha}$, IL-6에서 APF-I 구간에서 LPS 처리군 보다 높은 발현량을 나타내어 면역증강을 목적으로 한 기능성식품 개발에 활용 가능하다고 사료된다.

위령선약침이 Collagen, Adjuvant, LPS 및 PLA2 유발 류머티스성 관절염에 미치는 영향 (The Effect of $Clematidis$ Radix Herbal-acupuncture Solution, on Collagen, Adjuvant, Lipopolysaccharide and Phospholipase $A_2$ Induced Rheumatoid Arthritis in Mice)

  • 이진석;김경호;이승덕;김갑성
    • Journal of Acupuncture Research
    • /
    • 제29권1호
    • /
    • pp.127-137
    • /
    • 2012
  • Objectives : The purpose of this study is to investigate the effect of $Clematidis$ radix herbal-acupuncture solution, on collagen, adjuvant, lipopolysaccharide and phospholipase A2 induced rheumatoid arthritis in mice. Methods : Arthritis index was measured for mouse that was injected subcutaneously in solution mixed chicken type II collagen with Freund's complete adjuvant. We injected Freund's complete adjuvant into right posterior part of the sole of a ICR mouse foot, which was measured by plethysmometer. The solution mixed $CRHS$ with Tris-HCI, $CaCl_2$, substrate, enzyme was done a chemical action for thirty minutes, and then inhibitory activity of PLA2 enzyme was expressed with inhibition percentage by utilizing isolated arachidonic acid. COX-2 was induced by adding LPS to RAW 264.7 cell, and COX-2 activity was measured by western blot analysis and $PGE_2$ Biotrak kit. Results : $CRHS$ also inhibited Freund's complete adjuvant induced chronic rheumatoid arthritis in mice. $CRHS$ showed significant inhibition of type I and type II $PLA_2$ activities in a dose dependent manner. Furthermore, $PGE_2$ production was decreased with $CRHS$ and lipopolysaccharide-induced COX-2 protein expression was significantly inhibited by $CRHS$. Conclusions : These results suggest that $CRHS$ has an therapeutic effect on drug induced-rheumatoic arthritis by inhibiting $PLA_2$ and COX-2 activities.

사람 치은섬유모세포에서 잎꼬시래기 에탄올 추출물의 항염증 및 항산화 효과 (Anti-Inflammatory and Antioxidative Effects of Gracilaria textorii Ethanol Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제7권4호
    • /
    • pp.61-69
    • /
    • 2019
  • Purpose : Human gingival fibroblast cell is one of the the main cell types in periodontal tissue, which they can show anti-inflammatory activity through the production of numerous lines of inflammatory mediators such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukins. Porphyromonas gingivalis, one of the oral pathogens, has reported to play a critical role in the development of periodontal diseases. This study aimed to investigate anti-inflammatory and antioxidative activities of Gracilaria textorii ethanol extract (GTEE) in P. gingivalis derived lipopolysaccharide (LPS-PG) stimulated human gingival fibroblast (HGF)-1 cell line. Methods : In order to analyze anti-inflammatory and antioxidative activities of GTEE in HGF-1 cell line, NOS enzyme activity, expression levels of iNOS, COX-2, NAD(P)H quinone dehydrogenase (NQO)1 and their transcription factors were estimated by Griess reaction and western hybridization. Results : LPS-PG induced overexpression of iNOS and COX-2, which was significantly attenuated by GTEE treatment in a dose-dependent manner without any cytotoxicity. In addition, intracellular NOS activity was in accordance with the result of iNOS expression. Due to important role in the regulation of inflammatory responses, phosphorylated status of p65 and c-jun, each subunit of nuclear factor (NF)-κB and activator protein (AP)-1, was also dose-dependently ameliorated by GTEE treatment. One of phase II enzymes, NQO1, and its transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), were analyzed since elevated phase II enzyme expression inhibited inflammatory response, which was significantly elevated by GTEE treatment in HGF-1 cell line. Conclusion : In conclusion, GTEE mitigated LPS-PG-stimulated inflammatory responses by attenuating NF-κB and AP-1 activation as well as accelerating NQO1 and Nrf2 expression in HGF-1 cell line. These results indicate that GTEE might be utilized a promising strategy for potential anti-inflammatory agent in periodontal diseases.

Anti-inflammatory effect of Malus domestica cv. Green ball apple peel extract on Raw 264.7 macrophages

  • Lee, Eun-Ho;Park, Hye-Jin;Kim, Byung-Oh;Choi, Hyong-Woo;Park, Kyeung-Il;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • 제63권2호
    • /
    • pp.117-123
    • /
    • 2020
  • We examined the anti-inflammatory effect of the peel extract of the newly bred Korean apple (Malus domestica Borkh.) cultivar Green ball. To test its possible use as anti-inflammatory functional material, Raw 264.7 macrophages were treated with pro-inflammatory lipopolysaccharide (LPS) in the presence or absence of Green ball apple peel ethanol extract (GBE). Notably, up to 500 ㎍/mL of GBE did not result in any signs of inhibition on cellular metabolic activity or cytotoxicity in Raw 264.7 macrophages. Supplementation with GBE to LPS-treated Raw 264.7 macrophage significantly suppressed various pro-inflammatory responses in a dose-dependent manner, including i) nitric oxide (NO) production, ii) accumulation of inducible NO synthase and cyclooxygenase-2, iii) phosphorylation of nuclear factor-kappa B (NF-κB) subunit p65, and iv) expression of pro-inflammatory biomarker genes, including tumor necrosis factor alpha, interleukin 1 beta, interleukin 6, monocyte chemoattractant protein-1, and prostaglandin E synthase 2.