• Title/Summary/Keyword: cyclodextrin production

Search Result 105, Processing Time 0.023 seconds

Production Enhancement of Menthol in Suspension Cultures of Peppermint Using Cyclodextrin (Peppermint 세포 현탁배양에서 Cyclodextrin을 이용한 Menthol의 생산성 증대)

  • 조규헌;임철호;박세춘;신명근
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.26-30
    • /
    • 1998
  • The suspension cultures of Mentha piperita produce menthol which has very low solubility in water due to its hydrophobicity. This can be considered as a factor for its low production in the suspension suspension cultures. Cyclodextrin has the hydrophobic cavity inside the molecule in which menthol can be captured and allow to form a stable complex. The suspension culture of Mentha piperita showed 70% higher production enhancement in the medium containing 1.5%(w/v) $\beta$-cyclodextrin than the control. $\beta$-cyclodextrin had no adverse effect on the cell growth and showed the best result among $\alpha$-, $\beta$- and $\gamma$-cyclodextrins tested in terms of menthol production. We demonstrated that $\beta$-cyclodextrin can be used to enhance the production of menthol in the suspension cultures by capturing hydrophobic menthol into the cavity of cyclodextrin molecules.

  • PDF

Production Enhancement of Benzophenanthridine alkaloids in the Suspension Cultures of California poppy using Cyclodextrin (양귀비 세포 현탁배양계에서 Cyclodextrin을 이용한 Benzophenanthridine alkaloids의 생산성 증대)

  • 박세춘;조규헌
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • In this research, an extractive production system for alkaloids, where production and some degree of separation occur simultaneously, was developed in a way that the fast removal of alkaloid produced from the suspension cultures was done by capturing alkaloid with cyclodextrins. The alkaloid production was substantially enhanced up to 40 fold when the solid cultures of E. califonica cells treated with ${\beta}$-cyclodextrin compared to the control. The enhancement of alkaloid production was also observed in the suspension cultures. Interestingly, the production pattern seemed to change when the cultures were treated with ${\beta}$-cyclodextrin so that the major part of the alkaloids in the treated cultures was present in the medium, while the non-treated cultures produced the alkaloids intracellularly. ${\beta}$-cyclodextrin was the most effective one in terms of the alkaloid production among the cyclodextrilns(${\alpha}$-cylodextrin, ${\beta}$-cyclodextrin and ${\gamma}$-cyclodextrin) tested in the suspension cultures. ${\beta}$-cyclodextrin showed no adverse effect on the cell growth. The most effective concentration of ${\beta}$-cyclodextrin was observed around 1.5% (w/v) in the suspension cultures. The formation of the inclusion complex of the alkaloids with ${\beta}$-cyclodextrin in the suspension cultures was confirmed by detecting the shift of UV absorbance from 274 nm to 282 nm with a UV spectrophotometer.

  • PDF

Production of ${\beta}-Cyclodextrin$ from Starch by Cyclodextrin Glycosyltransferase from Alkalophilic Bacillus sp. (호알카리성 Bacillus sp. 유래의 Cyclodextrin Glycosyltransferase에 의한 ${\beta}-Cyclodextrin$의 생산)

  • Kim, Kee-Hong;Lim, Hyung-Guen;Seo, Jin-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.608-613
    • /
    • 1993
  • Production of cyclodextrin (CD) by cyclodextrin glycosyltransferase (CGTase) isolated from alkalophilic Bacillus sp. was carried out to determine optimal reaction conditions. The maximum initial rate of CD production from amylose was obtained at dextrose equivalent 10.5. The CD production yield showed inverse proportionality to DE values over the range from 0.5 to 37.7. Even though the deactivation constant of CGTase at $60^{\circ}C$ was higher than those at lower temperatures, the production rate and yield at $60^{\circ}C$ were still higher. These results suggest thermal stabilization of CGTase by binding with starch.

  • PDF

Reaction Mechanixm of Cyclodextrin formation from Swollen Extrusion Starch by cyclocextrin Glucanotransferase (팽윤 전분을 기질로 한 Cyclodextrin Glucanotransferase의 Cyclodextrin 생성반응 기작)

  • 이용현;조명진;박동찬
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.416-424
    • /
    • 1995
  • Mechanism of the cyclodextrin (CD) production reaction by cyclodextrin glucanotransferase (CGTase) using swollen extrusion starch as substrate was investigated emphasizing the structural features of starch granule. The degree of gelatinization was identified to be the most representative structural characteristic of swollen starch. The most suitable degree of gelatinization of swollen starch for CD production was around 63.52%. The structural transformation of starch granule during enzyme reaction was also followed by measuring the changes of the degree of gelatinization, microcrystallinity, and accessible and inaccessible portion to CGTase action of residual swollen starch. The adsorption phenomenon of CGTase to swollen starch was also examined under various conditions. The inhibition mechanism of CGTase by various CDs was identified to be competitive, most severely by a-CD. The mechanism elucidated will be used for development of a kinetic model describes CD production reaction in heterogeneous enzyme reaction system utilizing swollen extrusion starch.

  • PDF

Utilization of Cyclodextrin in Biotransformation by Digitalis lanata Cell Cultures (Digitalis lanata 세포배양에 의한 생물학적 변환에서의 cyclodextrin의 이용)

  • 이종은;최연숙;안지은;김동일
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.352-356
    • /
    • 1998
  • Addition of cyclodextrin in the biotransformation of digitoxin into digoxin by Digitalis lanata cell suspension cultures enhanced the conversion yield. Presence of cyclodextrin also supported good stability of the intermediate product, digoxin, for long time. Among several kinds of cyclodextrins, ${\beta}$-cyclodextrin provided the best results. It was found that the optimum form of cyclodextrin utilization was the external addition of iclusion complexes between digitoxin and ${\beta}$-cyclodextrin at 1: 2 molar ratio from the beginning of biotransformation. With the optimized conditions, addition of ${\beta}$-cyclodextrin enhanced the production of digoxin up to 1.55 fold. In this case, not only digitoxin consumption was increased, but also the production of by-product was reduced.

  • PDF

Enzymatic Synthesis of Cyclodextrin in an Heterogeneous Enzyme Reaction System Containing Insoluble Extruded Starch (Extrusion 전분을 기질로 한 불균일상 효소반응계에서의 Cyclodextrin 효소합성)

  • 이용현;박동찬
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.514-520
    • /
    • 1991
  • Direct synthesis of cyclodextrin (CD) from extruded insoluble corn starch without liquefaction procedure using cyclodextrin glucanotransferase (CGTase) was carried out. Increased CD production rate and yield were achieved in heterogeneous enzyme reaction system containing extruded corn starch compared with those of conventional system employing liquefied or partially cyclized starch. At extruded starch concentration of 100 g/l the CD concentration and conversion yield were reached up to 54 g/l and 0.54, respectively. High purity of $\alpha \beta \gamma$-CDs without accumulation of undesirable malto-oligosaccharides was produced, furthermore, the residual extruded starch was easily separated by centrifugation from reaction mixture, whlch will facilitate the purification procedure. Granular structure of extruded starch was observed by SEM to investigate enzyme reaction mechanism. Supplemental addition of $\alpha$-amylase enhanced slightly the initial CD production rate, but it decomposed produced CD at the late stage. Various! extruded raw starches, such as, corn, rice, and barley were also suitable substrates for CD production.

  • PDF

Enhancement of β-cyclodextrin Production and Fabrication of Edible Antimicrobial Films Incorporated with Clove Essential Oil/β-cyclodextrin Inclusion Complex

  • Farahat, Mohamed G.
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.12-23
    • /
    • 2020
  • Edible films containing antimicrobial agents can be used as safe alternatives to preserve food products. Essential oils are well-recognized antimicrobials. However, their low water solubility, volatility and high sensitivity to oxygen and light limit their application in food preservation. These limitations could be overcome by embedding these essential oils in complexed product matrices exploiting the encapsulation efficiency of β-cyclodextrin. This study focused on the maximization of β-cyclodextrin production using cyclodextrin glucanotransferase (CGTase) and the evaluation of its encapsulation efficacy to fabricate edible antimicrobial films. Response surface methodology (RSM) was used to optimize CGTase production by Brevibacillus brevis AMI-2 isolated from mangrove sediments. This enzyme was partially purified using a starch adsorption method and entrapped in calcium alginate. Cyclodextrin produced by the immobilized enzyme was then confirmed using high performance thin layer chromatography, and its encapsulation efficiency was investigated. The clove oil/β-cyclodextrin inclusion complexes were prepared using the coprecipitation method, and incorporated into chitosan films, and subjected to antimicrobial testing. Results revealed that β-cyclodextrin was produced as a major product of the enzymatic reaction. In addition, the incorporation of clove oil/β-cyclodextrin inclusion complexes significantly increased the antimicrobial activity of chitosan films against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella Typhimurium, Escherichia coli, and Candida albicans. In conclusion, B. brevis AMI-2 is a promising source for CGTase to synthesize β-cyclodextrin with considerable encapsulation efficiency. Further, the obtained results suggest that chitosan films containing clove oils encapsulated in β-cyclodextrin could serve as edible antimicrobial food-packaging materials to combat microbial contamination.

Production of Cyclodextrin from Raw Starch in the Agitated Bead Reaction System and its Reaction Mechanism (분쇄마찰매체 함유 효소반응계에서의 Cyclodextrin 생성과 Cyclodextrin Glucanotransferase의 작용 Mechanism)

  • Han, Il-Keun;Lee, Yong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.163-170
    • /
    • 1991
  • Production of cyclodextrin (CD) directly from raw corn starch without liquefaction using cyclodextrin glucanotransferase (CGTase) was carried out in an agitated bead reaction system. Similar CD yield and production rate comparable with those of conventional method using liquefied starch were obtained. Especially high purity-CD in the reaction mixture without accumulation of malto-oligosaccharides was obtained. The maximum 54g/l of CD was obtained at raw starch concentration of 200g/l. CD yield was inversely proportional to raw starch concentration, and conversion yield was 0.48 at substrate concentration of 100g/l. The optimal amount of enzyme (CGTase unit/g raw starch) was found to be around 6.0. Granular structure of raw starch degraded by CGTase was observed by SEM in order to investigate the enhancing mechanism, along with those of acid or alkali pretreated raw starch, amylose, and amylopectin. Kinetic constants of CGTase on raw starch in an agitated bead reaction system were evaluated, and CGTase was competitively inhibited by CD.

  • PDF

Cyclodextrin Production from Potato Starch with Bacillus stearothermophilus Cyclomaltodextrin Glucanotransferase (Bacillus stearothermophilus의 Cyclomaltodextrin Glucanotransferase를 이용한 감자전분으로부터의 Cyclodextrin 생산)

  • 황진봉;김승호
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.344-347
    • /
    • 1992
  • Simultaneous liquefaction and cyclodextrin (CD) production were conducted on potato starch using cyclomaltodextrin glucanotransferase (CGTase) from a mutant strain MNNG 8 of Bacillus stearothermophilus No. 239. A high concentration (30%) of potato starch was converted to cyc1o-dextrins (CDs) with 29% yield in the conditions of pH 6.0, temperature $80^{\circ}C$, 4.3 mM $CaCl_2$, CGTase addition of 3.0 dextrinizing activity unit (DAU) at $40^{\circ}C$/g starch.

  • PDF

Continuous Production of Cyclodextrin in Two-Stage Immobilized Enzyme Reactor Coupled with Ultrafiltration Recycle System (2단계 고정화 효소반응기를 활용한 Cyclodextrin의 연속생산)

  • Lee, Yong-Hyun;Lee, Sang-Ho;Han, Il-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.171-178
    • /
    • 1991
  • The two-stage enzyme reactor, packed with cyclodextrin glucanotransferase (CGTase) immobilized on Amberite IRA 900, coupled with ultrafiltration membrane was investigated for continuous production of cyclodextrin (CD). 5% (w/v) of soluble starch was partially cyclized, in the 0.1 l first-stage immobilized enzyme reactor, up to CD conversion yield of 10% (w/w) at retention time of 0.56hr and 1.5 units of immobilized CGTase/1g of carrier. In the second stage main immobilized enzyme reactor capacity of 1.5 l, the maximum CD conversion yield of 39% (w/v) was achieved at retention time of 2.8hr and 0.47 unit of CGTase/1 g of carrier. Unreacted residual dextrin was fractionated with ultrafiltration membrane, and then, recycled into the second-stage main bioreactor to increase the CD conversion yield. The most suitable membrane size and the volume concentration ratio (concentrate: filterate) for recycling of unreacted residual dextrin were found to be 5K dalton and 4:6, respectively. CD conversion yield was increased about 3~4% upon co-immobilization of pulluanase along with CGTase. Spent Amberite IRA 900 can be reutilized consecutively more than 3 times for immobilization of CGTase after regeneration.

  • PDF