• 제목/요약/키워드: cyclo(Ala-Pro)

검색결과 5건 처리시간 0.02초

동충하초의 Diketopiperazine 성분 (Diketopiperazines from Cordyceps militaris)

  • 김선범;황방연;이미경
    • 생약학회지
    • /
    • 제44권4호
    • /
    • pp.336-343
    • /
    • 2013
  • In a continuation of investigation on Cordyceps militaris, thirteen compounds were isolated from the $CH_2Cl_2$ and n-BuOH-soluble fraction of C. militaris. They were identified as twelve diketopiperazines such as cyclo($\small{L}$-Gly-$\small{L}$-Pro) (1), cyclo($\small{L}$-Ala-$\small{L}$-Pro) (2), cyclo($\small{L}$-Ser-$\small{L}$-Pro) (3), cyclo($\small{L}$-Val-$\small{L}$-Pro) (4), cyclo($\small{L}$-Thr-$\small{L}$-Pro) (5), cyclo($\small{L}$-Pro-$\small{L}$-Pro) (6), cyclo($\small{L}$-Thr-$\small{L}$-Leu) (7), cyclo($\small{L}$-Tyr-$\small{L}$-Ala) (8), cyclo($\small{L}$-Phe-$\small{L}$-Ser) (9), cyclo($\small{L}$-Phe-$\small{L}$-Pro) (10), cyclo($\small{L}$-Tyr-$\small{L}$-Pro) (11) and brevianamide F (13), and an amino acid, tryptophan (12). Their structures were identified on the basis of chemical evidences and spectroscopic analysis including 1D-NMR ($^1H$, $^{13}C$), 2D-NMR (HSQC, HMBC) and MS spectral data. Among the isolated compounds, compounds 1, 2, 6-11 are first reported from C. militaris.

Metabolite Chemical Composition of the Bletilla striata (Thunb.) Reichb. f. Endophyte Penicillium oxalicum

  • Ran Liu;Xuehua Han;Jing Gao;Min Luo;Dale Guo;Guangzhi Wang
    • Mycobiology
    • /
    • 제51권3호
    • /
    • pp.148-156
    • /
    • 2023
  • Penicillium oxalicum strain can be isolated from the Bletilla striata (Thunb.) Reichb. f. tubers. Its solid-state fermentation products are concentrated by percolation extraction. Separation and purification have been conducted to the ethyl acetate extracts by preparative HPLC. Based on the use of spectrometry, we have determined 17 known compounds, 12,13-dihydroxy-fumitremorgin C (1), pseurotin A (2), tyrosol (3), cyclo-(L-Pro-L-Val) (4), cis-4-hydroxy-8-O-methylmellein (5), uracil (6), cyclo-(L-Pro-L-Ala) (7), 1,2,3,4-tetrahydro-4-hydroxy-4-quinolin carboxylic acid (8), cyclo-(Gly-L-Pro) (9), 2'-deoxyuridine (10), 1-(b-D-ribofuranosyl)thymine (11), cyclo-(L-Val-Gly) (12), 2'-deoxythymidine (13), cyclo-(Gly-D-Phe) (14), cyclo-L-(4-hydroxyprolinyl)-D-leucine (15), cyclo-(L)-4-hydroxy-Pro-(L)-Phe (16), uridine (17). Here, we report compounds 1-3, 5, 7-8, 11-12, 14-17 are first found and isolated from this endophyte.

Antimicrobial Cyclic Dipeptides from Japanese Quail (Coturnix japonica) Eggs Supplemented with Probiotic Lactobacillus plantarum

  • Sa-Ouk Kang;Min-Kyu Kwak
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.314-329
    • /
    • 2024
  • Fifteen cyclic dipeptides (CDPs) containing proline, one cyclo(Phe-Ala) without proline, and a non-peptidyl ᴅⳑ-3-phenyllactic acid were previously identified in the culture filtrates of Lactobacillus plantarum LBP-K10, an isolate from kimchi. In this study, we used Japanese quail (Coturnix japonica) eggs to examine the effects of probiotic supplementation on the antimicrobial CDPs extracted from quail eggs (QE). Eggshell-free QE were obtained from two distinct groups of quails. The first group (K10N) comprised eggs from unsupplemented quails. The second group (K10S) comprised eggs from quails supplemented with Lb. plantarum LBP-K10. The QE samples were extracted using methylene chloride through a liquid-liquid extraction process. The resulting extract was fractionated into 16 parts using semi-preparative high-performance liquid chromatography. Two fractions, Q6 and Q9, were isolated from K10S and identified as cis-cyclo(ⳑ-Ser-ⳑ-Pro) and cis-cyclo(ⳑ-Leu-ⳑ-Pro). The Q9 fraction, containing cis-cyclo(ⳑ-Leu-ⳑ-Pro), has shown significant inhibitory properties against the proliferation of highly pathogenic multidrug-resistant bacteria, as well as human-specific and phytopathogenic fungi. Some of the ten combinations between the remaining fourteen unidentified fractions and two fractions, Q6 and Q9, containing cis-cyclo(ⳑ-Ser-ⳑ-Pro) and cis-cyclo(ⳑ-Leu-ⳑ-Pro) respectively, demonstrated a significant increase in activity against multidrug-resistant bacteria only when combined with Q9. The activity was 7.17 times higher compared to a single cis-cyclo(ⳑ-Leu-ⳑ-Pro). This study presents new findings on the efficacy of proline-containing CDPs in avian eggs. These CDPs provide antimicrobial properties when specific probiotics are supplemented.

능이버섯(Sarcodon aspratus)으로부터 분리한 저분자 화합물의 화학구조 (Chemical Structures of the Compounds Isolated from the Edible Mushroom Sarcodon aspratus)

  • 강희철;윤봉식;유승헌;유익동
    • Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.298-302
    • /
    • 2000
  • 식용버섯 유래의 저분자 대사산물을 탐색하던 중 충남 계룡산 일대에서 채집한 능이버섯(Sarcodon aspratus)으로부터 7종의 화합물을 분리하였다. 능이버섯을 메탄올에 추출한 후 용매분획하여 그 중 화합물이 많이 함유된 chloroform층과 ethyl acetate층에 대하여 각각 silica gel 및 Sephadex LH-20 column chromatography를 수행하였다. 주요 대사산물을 함유하고 있는 분획물을 TLC 및 분취용 HPLC를 사용하여 최종적으로 정제하여 7종의 화합물을 분리하였다. 이들 화합물은 $^1H\;NMR$, mass 분석 및 문헌 data와 비교하여 각각 4-hydroxybenzoic acid methyl ester, 4-hydroxybenzaldehyde, cyclo(Ala-Pro), adenosine, nicotinamide, BL V, linoleic acid으로 동정되었다.

  • PDF

Cyclic Dipeptides from Bacillus vallismortis BS07 Require Key Components of Plant Immunity to Induce Disease Resistance in Arabidopsis against Pseudomonas Infection

  • Noh, Seong Woo;Seo, Rira;Park, Jung-Kwon;Manir, Md. Maniruzzaman;Park, Kyungseok;Sang, Mee Kyung;Moon, Surk-Sik;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • 제33권4호
    • /
    • pp.402-409
    • /
    • 2017
  • Cyclic dipeptides (CDPs) are one of the simplest compounds produced by living organisms. Plant-growth promoting rhizobacteria (PGPRs) also produce CDPs that can induce disease resistance. Bacillus vallismortis strain BS07 producing various CDPs has been evaluated as a potential biocontrol agent against multiple plant pathogens in chili pepper. However, plant signal pathway triggered by CDPs has not been fully elucidated yet. Here we introduce four CDPs, cyclo(Gly-L-Pro) previously identified from Aspergillus sp., and cyclo(L-Ala-L-Ile), cyclo(L-Ala-L-Leu), and cyclo(L-Leu-L-Pro) identified from B. vallismortis BS07, which induce disease resistance in Arabidopsis against Pseudomonas syringae infection. The CDPs do not directly inhibit fungal and oomycete growth in vitro. These CDPs require PHYTOALEXIN DEFICIENT4, SALICYLIC ACID INDUCTION DEFICIENT2, and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 important for salicylic acid-dependent defense to induce resistance. On the other hand, regulators involved in jasmonate-dependent event, such as ETHYLENE RECEPTOR1, JASMONATE RESPONSE1, and JASMONATE INSENSITIVE1, are necessary to the CDP-induced resistance. Furthermore, treatment of these CDPs primes Arabidopsis plants to rapidly express PATHOGENESIS-RELATED PROTEIN4 at early infection phase. Taken together, we propose that these CDPs from PGPR strains accelerate activation of jasmonate-related signaling pathway during infection.