• Title/Summary/Keyword: cyclic testing

Search Result 285, Processing Time 0.019 seconds

Cyclic testing of short-length buckling-restrained braces with detachable casings

  • Pandikkadavatha, Muhamed S.;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.699-716
    • /
    • 2016
  • Buckling-restrained braced frames (BRBFs) are commonly used as lateral force-resisting systems in the structures located in seismic-active regions. The nearly symmetric load-displacement behavior of buckling-restrained braces (BRBs) helps in dissipating the input seismic energy through metallic hysteresis. In this study, an experimental investigation has been conducted on the reduced-core length BRB (RCLBRB) specimens to evaluate their hysteretic and overall performance under gradually increased cyclic loading. Detachable casings are used for the concrete providing confinement to the steel core segments of all test specimens to facilitate the post-earthquake inspection of steel core elements. The influence of variable core clearance and the local detailing of casings on the cyclic performance of RCLBRB specimens has been studied. The RCLBRB specimen with the detachable casing system and a smaller core clearance at the end zone as compared to the central region exhibited excellent hysteretic behavior without any slip. Such RCLBRB showed balanced higher yielding deformed configuration up to a core strain of 4.2% without any premature instability. The strength-adjustment factors for the RCLBRB specimens are found to be nearly same as that of the conventional BRBs as noticed in the past studies. Simple expressions have been proposed based on the regression analysis to estimate the strength-adjustment factors and equivalent damping potential of the RCLBRB specimens.

Model tests on bearing capacity and accumulated settlement of a single pile in simulated soft rock under axial cyclic loading

  • Zhang, Benjiao;Mei, Can;Huang, Bin;Fu, Xudong;Luo, Gang;Lv, Bu
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.611-626
    • /
    • 2017
  • The research reported herein is concerned with the model testing of piles socketed in soft rock which was simulated by cement, plaster, sand, water and concrete hardening accelerator. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted and the bearing capacity and accumulated deformation characteristics under different static, and cyclic loads were studied by using a device which combined oneself-designed test apparatus with a dynamic triaxial system. The accumulated deformation of the pile head, and the axial force, were measured by LVDT and strain gauges, respectively. Test results show that the static load ratio (SLR), cyclic load ratio (CLR), and the number of cycles affect the accumulated deformation, cyclic secant modulus of pile head, and ultimate bearing capacity. The accumulated deformation increases with increasing numbers of cycles, however, its rate of growth decreases and is asymptotic to zero. The cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles, and finally remains stable after 50 cycles. The ultimate bearing capacity of the pile is increased by about 30% because of the cyclic loading thereon, and the axial force is changed due to the applied cyclic shear stress. According to the test results, the development of accumulated settlement is analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to cyclic loading.

Experimental and numerical studies on the cyclic behavior of R/C hollow bridge piers with corroded rebars

  • Cardone, D.;Perrone, G.;Sofia, S.
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.41-62
    • /
    • 2013
  • A comprehensive experimental program of cyclic tests on 1:3-scale models of bridge piers is going to be carried out at the Laboratory of Structures and Materials of the University of Basilicata. The testing models include eight RC single shaft piers with hollow circular cross section. Four piers have been realised using corroded steel rebars. In this paper, the results of preliminary numerical simulation analyses of the cyclic behaviour of the piers, carried out with Opensees using fiber-based models, are presented. Pull-out and lap-splice effects of steel rebars have been taken into account in the numerical analyses. First, the experimental specimens and the test set up are presented. Next, the results of the numerical analyses are discussed. In the numerical analyses, different configurations and levels of corrosion have been considered. The effective stiffness and equivalent damping of the piers is reported as a function of pier ductility and pier drift.

A Study on Corrosion Fatigue Crack Growth Behavior in Al 7075-T651(II) (Al 7075-T651의 부식피로균열 성장 거동에 관한 연구(II))

  • 한지원;우흥식
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.3-10
    • /
    • 1999
  • Fatigue crack growth rates in commercial plate of high strength Al 7075-T651 were investigated for the T-L direction in air, water and sea water. In this paper the effect of cyclic load wave-form(trapezoid and triangle) on fatigue crack growth rates in air, water and sea water environments were investigated using standard LEFM testing procedures. It was founded that the fatigue crack growth behaviors were not affected by cyclic load wave-forms. In region II (stable crack growth region), the fatigue crack growth behaviors were insensitive to cyclic load wave-forms and were sensitive to environment i.e. fatigue crack growth behaviors were higher in sea water than in air for all cyclic load wave-form. The result of fractographical morphology in air, water and sea water by SEM showed obvious dimple rupture and typical striation in air, but transgranular fracture surface in water and sea water. The values m are not affected by corrosion environments but C are different values.

  • PDF

Cyclic Threshold Shearing Strains of Sands Based on Pore Water Pressure Buildup and Variations of Deformation Characteristics (간극수압증가와 동적변형특성 변화에 근거한 사질토 지반의 반복한계전단변형률)

  • Kim, Dong-Soo;Choo, Yun-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.274-281
    • /
    • 2004
  • In this paper, the existing Stokoe type torsional shear equipment is modified to saturate the specimen and measure excess pore water pressure during undrained testing. Two types of sands, Geumgang and Toyoura sands, were collected and TS tests were performed at various densities drainage conditions, and confining pressures. The cyclic threshold shearing strains were estimated based on the variations of shear modulus, material damping ratio and pore pressures with loading cycles. The effects of relative density, confining pressure, and drainage condition on the cyclic threshold shearing strains were investigated.

  • PDF

Experimental study on the cyclic behaviour of bolted end-plate joints

  • Adany, Sandor;Calado, Luis;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.33-50
    • /
    • 2001
  • In this paper an experimental study is performed on end-plate type joints. The test arrangement represents a column-base joint of a steel frame. Altogether six specimens were tested, each of them subjected to cyclic loading. The specimens were carefully designed by performing detailed preliminary calculations so that they would present typical behaviour types of end-plate joints. On the basis of the experimentally established moment-rotation relationship, the cyclic characteristics of each specimen have been calculated and compared to one another. The results are evaluated, qualitative and quantitative conclusions are drawn.

Experimental Characterization of Cyclic Deformation in Copper Using Ultrasonic Nonlinearity

  • Kim, C.S.;Park, Ik-Keun;Jhang, Kyung-Young;Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.285-291
    • /
    • 2008
  • We have experimentally investigated the cyclic deformation in copper using ultrasonic nonlinearity. The observation and characterization of dislocation substructure have been conducted using transmission electron microscope and electron backscattered diffraction technique. The ultrasonic nonlinearity (${\beta}/{\beta}_0$) was measured by the harmonic generation technique after various fatigue cycles. The microstructural effect on the nonlinearity was discussed regarding the extent of dislocation substructures evolved from low cycle fatigue. The ultrasonic nonlinearity of copper monotonically increased with the fatigue cycles due to the evolution of dislocation cell substructures.

Testing and modelling of shape memory alloy plates for energy dissipators

  • Heresi, Pablo;Herrera, Ricardo A.;Moroni, Maria O.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.883-900
    • /
    • 2014
  • Shape memory alloys (SMA) can dissipate energy through hysteresis cycles without significant residual deformation. This paper describes the fabrication and testing of copper-based SMA hourglass-shaped plates for use in energy dissipation devices and the development of a numerical model to reproduce the experiments. The plates were tested under cyclic flexural deformations, showing stable hysteresis cycles without strength degradation. A detailed nonlinear numerical model was developed and validated with the experimental data, using as input the constitutive relationship for the material determined from cyclic tests of material coupons under tension loading. The model adequately reproduces the experimental results. The study is focused on the exploitation of SMA in the martensite phase.

Contribution of modification of a pressuremeter for an effective prediction of soil deformability

  • Aissaoui, Soufyane;Zadjaoui, Abdeldjalil;Reiffsteck, Philippe
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.381-392
    • /
    • 2020
  • The difficulties, challenges and limitations faced in standard pressuremeter testing in the measurement of low soil deformations led a number of researchers to think about the possible modification of the equipment, and especially the replacement of the volumeter by a Hall Effect sensor. This article is a major contribution in this direction. It makes an attempt to detail the design, manufacture and operation of the new equipment. The calibration of the various components was carried out according to the rules presently in force. This proposal was applied, on an exploratory basis, to the data of a real site located in France. The authors present the preliminary results of some cyclic pressuremeter tests, previously carried out in the laboratory, on a sandy material, and they then provide a basic interpretation of these results. The findings indicated that the proposed apparatus is capable of providing high-quality information about constraints and deformations. Although these tests were performed within the laboratory, it was possible to analyze the power, quality, performance and insufficiencies of the proposed equipment.

Cyclic Load Testing of Concrete Expansion Anchors

  • Gary L. Barnes;Lee, Sang-Myung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.404-404
    • /
    • 1996
  • In order to ensure a concrete expansion anchor is suitable for a given application, the load resistance behavior of the anchor must be known. ASTM E488 provides a standard method of testing expansion anchors for static and dynamic loads. Due to the many types of anchors available commercially and the large variability of applications, the ASTM does not delineate all details or requirements necessary to comprehensively determine the dynamic load behavior of concrete expansion anchors. A test program is presented in this paper which was developed and implemented to determine the cyclic load behavior of wedge-type concrete expansion anchors. Test results are also presented along with a discussion of the behavior of anchors, and their suitability for use.

  • PDF