• Title/Summary/Keyword: cyclic shear test

Search Result 427, Processing Time 0.031 seconds

Experimental Study on the Hysteretic Behavior of R/C Low-Rise Shear Walls under Cyclic Loads (반복하중을 받는 철근콘크리트 저형 전단벽의 이력거동에 관한 실험적 연구 (I))

  • 최창식;이용재;윤현도;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.75-80
    • /
    • 1991
  • Results of an experimental investigation of low-rise reinforced concrete shear walls with rectangular cross section under cyclic loads are discussed and evaluated. Two half scale models of test specimens with height to length ratio of 0.75 were experimented. The dimension of all walls is 1500mm wide $\times$ 950 mm high $\times$ 100 mm thick for all specimens and the section of all boundary at both ends is 100 mm $\times$ 200mm. Main variables are : horizontal shear reinforcement ratios and reinforcement details(including crossed diagonal shear reinforcements in SWR2 specimen) In SWR2 specimen, maximum strength and consequently dissipating energy index were 1.15~1.21 and 1.48 times greater than those of SWR1 specimen, respectively.

  • PDF

Relative Panel Zone Strength in Seismic Steel Moment Connections for Prevention of Panel Zone Shear Buckling (내진철골모멘트접합부 패널존의 전단좌굴 방지를 위한 패널존 상대강도)

  • Kim, So-Yeon;Lee, Cheol-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.845-850
    • /
    • 2007
  • The empirical AISC panel zone thickness provision$(t_z\geq(d_z+w_z)$/90) to prevent the cyclic shear buckling of the panel zone was proposed based on the test data of Krawinkler et al. (1971) and Bertero et al. (1973) However, no published records of the equation development or any other background information appear to be available. The calibrated finite element analysis results of this study indicated that the AISC provision was not reasonable. In this study, through including the effects of the column axial force and the aspect ratio of the panel zone, a new equation for the relative strength between the beam and the panel zone was proposed such that the proposed equation can prevent the panel zone shear buckling and reduce the potential fracture associated with the kinking of the column flanges.

  • PDF

Joint shear strength prediction for reinforced concrete beam-to-column connections

  • Unal, Mehmet;Burak, Burcu
    • Structural Engineering and Mechanics
    • /
    • v.41 no.3
    • /
    • pp.421-440
    • /
    • 2012
  • In this analytical study numerous prior experimental studies on reinforced concrete beam-to-column connections subjected to cyclic loading are investigated and a database of geometric properties, material strengths, configuration details and test results of subassemblies is established. Considering previous experimental research and employing statistical correlation method, parameters affecting joint shear capacity are determined. Afterwards, an equation to predict the joint shear strength is formed based on the most influential parameters. The developed equation includes parameters that take into account the effect of eccentricity, column axial load, wide beams and transverse beams on the seismic behavior of the beam-to-column connections, besides the key parameters such as concrete compressive strength, reinforcement yield strength, effective joint width and joint transverse reinforcement ratio.

Effect of spiral reinforcement on flexural-shear-torsional seismic behavior of reinforced concrete circular bridge columns

  • Belarbi, Abdeldjelil;Prakash, Suriya;You, Young-Min
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.137-158
    • /
    • 2009
  • This paper investigates the behavior of reinforced concrete (RC) circular columns under combined loading including torsion. The main variables considered in this study are the ratio of torsional moment to bending moment (T/M) and the level of detailing for moderate and high seismicity (low and high transverse reinforcement/spiral ratio). This paper presents the results of tests on seven columns subjected to cyclic bending and shear, cyclic torsion, and various levels of combined cyclic bending, shear, and torsion. Columns under combined loading were tested at T/M ratios of 0.2 and 0.4. These columns were reinforced with two spiral reinforcement ratios of 0.73% and 1.32%. Similarly, the columns subjected to pure torsion were tested with two spiral reinforcement ratios of 0.73% and 1.32%. This study examined the significance of proper detailing, and spiral reinforcement ratio and its effect on the torsional resistance under combined loading. The test results demonstrate that both the flexural and torsional capacities are decreased due to the effect of combined loading. Furthermore, they show a significant change in the failure mode and deformation characteristics depending on the spiral reinforcement ratio. The increase in spiral reinforcement ratio also led to significant improvement in strength and ductility.

An experimental investigation on dynamic properties of various grouted sands

  • Hsiao, Darn-Horng;Phan, Vu To-Anh;Huang, Chi-Chang
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-94
    • /
    • 2016
  • Cyclic triaxial and resonant column tests were conducted to understand the beneficial effects of various grouted sands on liquefaction resistance and dynamic properties. The test procedures were performed on a variety of grouted sands, such as silicate-grouted sand, silicate-cement grouted sand and cement-grouted sand. For each type of grout, sand specimen was mixed with a 3.5% and 5% grout by volume. The specimens were tested at a curing age of 3, 7, 28 and 91 days, and the results of the cyclic stress ratio, the maximum shear modulus and the damping ratio were obtained during the testing program. The influence of important parameters, including the type of grout, grout content, shear strain, confining pressure, and curing age, were investigated. Results indicated that sodium silicate grout does not improve the liquefaction resistance and shear modulus; however, silicate-cement and cement grout remarkably increased the liquefaction resistance and shear modulus. Shear modulus decreased and damping ratio increased with an increase in the amplitude of shear strain. The effect of confining pressure on clean sand and sodium silicate grouted sand was found to be insignificant. Furthermore, a nonlinear regression analysis was used to prove the agreement of the shear modulus-shear strain relation presented by the hyperbolic law for different grouted sands, and the coefficients of determination, $R^2$, were nearly greater than 0.984.

Structural Performance Evaluation of Reinforced Concrete Shear Walls with Various Connection Type Under Load Reversals. (반복하중을 받는 철근콘크리트 전단벽체의 접합방식에 따른 구조성능 평가)

  • 신종학;하기주;권중배;전찬목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.513-518
    • /
    • 1997
  • In this study, nine reinforced concrete infilled frames involved bare frames were tested during vertical and cyclic loads simultaneously. This test programs were carried to investigate the horizontal strength and the crack propagation in variance with hoop reinforcement ratio. All specimens were modeling in one-third scale size. In this experimental program structural performance of reinforced concrete shear wall were focus at connection types. Based on the test results, the following conclusions are made. In the boundary column member of reinforced concrete shear wall, increasing the ratio of hoop bar in two or three times, in the fully babel type, the shear and horizontal strength of specimens were increased 1.1-1.2 times than that of fully rigid frame. And infilled shear wall specimen were increased 1.17-1.27 times than that. Fully rigid babel type shear wall specimens were increased 5.7~8.0 times, and infilled shear wall specimens were increased about 4.0~5.6 times than that of infilled shear wall specimens.

  • PDF

Seismic Performance of Special Shear Wall Structural System with Effectively Reduced Reinforcement Detail (완화된 단부 배근상세를 갖는 특수전단벽 구조시스템의 내진성능평가)

  • Chun, Young-Soo;Lee, Ki-Hak;Lee, Hyo-Won;Park, Young-Eun;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • The current seismic design code prescribes that a structural wall should be designed as a special shear wall when the building height is more than 60 m and its seismic design category is classified as D. However, the use of a special shear wall has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of a special shear wall and a special shear wall with relaxed reinforcement detail was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the reinforcement details of the special boundary element. Next, the seismic performances of a special shear wall structural system and that of a special shear wall structural system with relaxed reinforcement detail was evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of the shear wall with relaxed reinforcement detail was almost similar to the performance of a special shear wall and has the performance which requested from standard. The results of the seismic evaluation showed that all special shear walls with relaxed reinforcement detail are satisfied with the design code and seismic performance.

Numerical Evaluation of the Influence of Joint Roughness on the Deformation Behavior of Jointed Rock Masses (절리면의 거칠기 특성이 정리암반의 거동에 미치는 영향에 대한 수치해석적 연구)

  • 이연규
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.225-236
    • /
    • 2001
  • The roughness of rock joint is one of the most important parameters in developing the shear resistance and the tendency of dilation. Due to the damage accumulated with shearing displacement, the roughness angle is lowered continuously. It is known that dilation, shear strength hardening, and softening are directly related to the degradation of asperities. Much effort has been directed to incorporate the complicated damage mechanism of asperities into a constitutive model fur rock joints. This study presents an elasto-plastic formulation of joint behavior including elastic deformability, dilatancy and asperity surface damage. It is postulated that the plastic portion of incremental displacement 7an be decomposed into contributions from both sliding along the asperity surface and damage of asperity. Numerical cyclic shear tests are presented to illustrate th? performance of the derived incremental stress-displacement relation. A laboratory cyclic shear test is also simulated. Numerical examples reveal that the elasto-plastic joints model is promising.

  • PDF

Cyclic Lateral Load Test on the Punching Shear Strength and the Lateral Displacement Capacity of Slab-Column Connections (슬래브-기둥 접합부의 펀칭강도 및 횡변위 성능에 관한 반복 횡하중 실험)

  • Choi, Jung-Wook;Song, Jin-Gyu;Kim, Jun-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.99-108
    • /
    • 2007
  • In the flat-plate slab design of the KCI and ACI building code, the punching shear strength of connections with shear reinforcement can increase one and half times to that of connections without shear reinforcement. And the ACI-ASCE committee 352 recommendations propose limiting the direct shear ratio $V_g$/$V_c$ on interior connections to 0.4 to insure adequate drift capacity. In this study, four interior column-slab connections were tested to look into the punching shear strength and the lateral displacement capacity of the flat-plate slab with and without shear reinforcement under cyclic lateral loading. Based on the test results, it is found that the provision about punching shear strength in the codes may appropriate for the gravity loading only whereas it is unconservative for the lateral loading and that the limit of ACI-ASCE committee 352 appears conservative.

Shear mechanism and bearing capacity calculation on steel reinforced concrete special-shaped columns

  • Xue, J.Y.;Chen, Z.P.;Zhao, H.T.;Gao, L.;Liu, Z.Q.
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.473-487
    • /
    • 2012
  • An experimental study was performed to investigate the seismic performance of steel reinforced concrete (SRC) special-shaped columns. For this purpose, 17 steel reinforced concrete special-shaped column specimens under low-cyclic reversed load were tested, load process and failure patterns of the specimens with different steel reinforcement were observed. The test results showed that the failure patterns of these columns include shear-diagonal compression failure, shear-bond failure, shear-flexure failure and flexural failure. The failure mechanisms and characteristics of SRC special-shaped columns were also analyzed. For different SRC special-shaped columns, based on the failure characteristics and mechanism observed from the test, formulas for calculating ultimate shear capacity in shear-diagonal compression failure and shear-bond failure under horizontal axis and oblique load were derived. The calculated results were compared with the test results. Both the theoretical analysis and the experimental results showed that, the shear capacity of T, L shaped columns under oblique load are larger than that under horizontal axis load, whereas the shear capacity of +-shaped columns under oblique load are less than that under horizontal axis load.