• 제목/요약/키워드: cyclic shear test

검색결과 428건 처리시간 0.026초

주기하중 하에서 철근 콘크리트 전단벽체와 철골 연결보 접합부의 내진성능 (Seismic Performance of Steel Coupling Beam and RC Shear Wall under Lateral Cyclic Load)

  • 임우영;홍성걸
    • 콘크리트학회논문집
    • /
    • 제27권6호
    • /
    • pp.591-602
    • /
    • 2015
  • 이 논문에서는 철골 연결보와 철근 콘크리트 전단벽체의 내진성능을 평가하고자 주기하중 실험을 수행하였다. 실험의 주요 변수는 벽체의 보강 상세이었다. 현행 설계 기준을 따라 설계된 병렬 전단벽체는 콘크리트의 지압강도로 인해 조기 파괴되었다. 한편, 매립길이 내에 추가적인 수직 및 수평 보강재로 보강된 벽체의 경우, 지압파괴가 방지되는 것으로 나타났다. 실험결과, 벽체의 수직철근은 수평철근보다 병렬 전단벽의 전단 강도에 더 영향을 끼치는 것으로 나타났다. 매립 철골 보 플랜지 상 하부에서 발생하는 콘크리트의 응력분포를 가정하여, PC 병렬 전단벽체 내의 소요 철근의 양이 결정되었으며, 이를 이용하여 예측 강도 식을 제안하였다. 예측된 강도식은 실험값과 비교적 잘 일치하였다.

Dynamic characteristics of combined isolation systems using rubber and wire isolators

  • Lee, Seung-Jae;Truong, Gia Toai;Lee, Ji-Eon;Park, Sang-Hyun;Choi, Kyoung-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.1071-1084
    • /
    • 2022
  • The present study aims to investigate the dynamic properties of a novel isolation system composed of separate rubber and wire isolators. The testing program comprised pure compressive, pure-shear, compressive-stress dependence, and shear-strain dependence tests that used full-scale test specimens according to ISO 22762-1. A total of 22 test specimens were fabricated and investigated. Among the tests, the pure compressive test was a destructive test that reached up to the failure stage, whereas the others were nondestructive tests before the failure stage. Similar to the pure-shear test, at each compressive-stress level in the compressive dependence test or at each shear-strain level in the shear-strain dependence test, the cyclic loading was conducted for three cycles. In the nondestructive tests, examination of the dynamic shear properties in the X-direction was independent of the Y-direction. The test results revealed that the increase in the shear strain increased the energy dissipation but decreased the damping ratio, whereas the increase in the compressive stress increased the damping ratio. In addition, a macro model was developed to simulate the load-displacement response of the isolation systems, and the prediction results were consistent with the experimental results.

가력하중을 통한 CST30제진댐퍼시스템의 구조성능 평가 (Structural Performance Evaluation of VES Damper System subjected to Cyclic Loadings(CST30))

  • 김대훈;이동규;이기학
    • 한국공간구조학회논문집
    • /
    • 제15권2호
    • /
    • pp.61-68
    • /
    • 2015
  • The performance enhancement of various structural building systems from natural hazards has become an inctreasingly important issue in engineering field. In this paper, visco-elastic(VE) CST30 damping systems were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. Main test variables are relative shear stiffness, rate of loading frequency, and thickness of specimens to evaluate the seismic capacity based on the performance criteria. This experiment was performed using a total of 12 specimens, subjected to cyclic loadings up to a shear deformation of 500%. All the CST30 dampers provided a ductile and stable hysterestic behavior when subjected to the demands of large shear stiffness and different loading frequencies. The test results showed that the CST30 dampers are an effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings.

Experimental investigations and FE simulation of exterior BCJs retrofitted with CFRP fabric

  • Halahla, Abdulsamee M.;Rahman, Muhammad K.;Al-Gadhib, Ali H.;Al-Osta, Mohammed A.;Baluch, Mohammed H.
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.337-354
    • /
    • 2019
  • This paper presents the results of experimental and numerical studies conducted to investigate the behavior of exterior reinforced concrete beam column joints (BCJ) strengthened by using carbon fiber reinforced polymer (CFRP) sheets. Twelve reinforced concrete beam-column joints (BCJ) were tested in an experimental program by simulating the joints in seismically deficient old buildings. One group of BCJs was designed to fail in flexure at the BCJ interface, and the second group was designed to ensure joint shear failure. One specimen in each set was -retrofitted with CFRP sheet wrapped diagonally around the joint. The specimens were subjected to both monotonic and cyclic loading up to failure. 3D finite element simulation of the BCJs tested in the experimental program was carried out using the software ABAQUS, adopting the damage plasticity model (CDP) for concrete. The experimental results showed that retrofitting of the shear deficient, BCJs by CFRP sheets enhanced the strength and ductility and the failure mode changed from shear failure in the joints to the desired flexural failure in the beam segment. The FE simulation of BCJs showed a good agreement with the experimental results, which indicated that the CDP model could be used to model the problems of the monotonic and cyclic loading of beam-column reinforced concrete joints.

Cyclic behavior of interior beam-column connections in non-seismic RC frames at different loading rates

  • Dhakal, Rajesh P.;Pan, Tso-Chien
    • Structural Engineering and Mechanics
    • /
    • 제23권2호
    • /
    • pp.129-145
    • /
    • 2006
  • This paper provides an insight into the response of non-seismic reinforced concrete (RC) building frames to excitations of different frequencies through experimental investigation. The results of cyclic loading tests of six full-scale RC beam-column sub-assemblies are presented. The tested specimens did not have any transverse reinforcement inside the joint core, and they were subjected to quasi-static and dynamic loading with frequencies as high as 20 Hz. Some important differences between the cyclic responses of non-seismic and ductile RC frames are highlighted. The effect of excitation frequency on the behavior of non-seismic joints is also discussed. In the quasi-static tests, shear deformation of the joint panel accounted for more than 50% of the applied story drift. The test results also showed that higher-frequency excitations are less detrimental than quasi-static cyclic loads, and non-seismic frames can withstand a higher load and a larger deformation when they are applied faster.

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

불포화 이암풍화토의 동적거동 (Dynamic Behavior of Unsaturated Decomposed Mudstone Soil)

  • 배중선;이주상;김주철;이종규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.541-548
    • /
    • 2001
  • The interest in the dynamic properties of soils has increased strongly because of earthquake, heavy traffic, and foundations undergo high amplitude of vibrations. Most of soils in Korean peninsula are composed of granite soils, especially the decomposed mudstone soils are widely spread in Pohang areas, Kyong-buk province. Therefore, it Is very important to investigate the dynamic properties of these types of soils. The most important soil parameters under dynamic loadings are shear modulus and material dampings. Furthermore, few definitive data exist that can evaluate the behavior of unsaturated decomposed mudstone soils under dynamic loading conditions. The investigations described in this paper is designed to identify the shear modulus and damping ratio due to a surface tension for the unsaturated decomposed mudstone soils ulder low and high strain amplitude, For this purpose, the resonant column test and the cyclic triaxial test were performed. Test results and data have shown that the optimum degree of saturation under low and strain amplitude is 32 ∼ 37% which is higher than that of decomposed granite due to the amount of fine particles as well as the type and proportion of chief rock-forming minerals.

  • PDF

횡방향 가력실험 및 충격실험을 통한 강판콘크리트(SC) 전단벽의 감쇠비 평가 (Investigation of Damping Ratio of Steel Plate Concrete (SC) Shear Wall by Lateral Loading Test & Impact Test)

  • 조성국;소기환;박웅기
    • 한국지진공학회논문집
    • /
    • 제17권2호
    • /
    • pp.79-88
    • /
    • 2013
  • Steel plate concrete (SC) composite structure is now being recognized as a promising technology applicable to nuclear power plants as it is faster and suitable for modular construction. It is required to identify its dynamic characteristics prior to perform the seismic design of the SC structure. Particularly, the damping ratio of the structure is one of the critical design factors to control the dynamic response of structure. This paper compares the criteria for the damping ratios of each type of structures which are prescribed in the regulatory guide for the nuclear power plant. In order to identify the damping ratio of SC shear wall, this study made SC wall specimens and conducted experiments by cyclic lateral load tests and vibration tests with impact hammer. During the lateral loading test, SC wall specimens exhibited large ductile capacities with increasing amplitude of loading due to the confinement effects by the steel plate and the damping ratios increased until failure. The experimental results show that the damping ratios increased from about 6% to about 20% by increasing the load from the safe shutdown earthquake level to the ultimate strength level.

실트질 함유량에 따른 낙동강 모래의 비배수 반복전단거동 특성 (Characteristics of Undrained Cyclic Shear Behavior of Nak-Dong River Sand by Silt Contents)

  • 김영수;김대만
    • 한국지반공학회논문집
    • /
    • 제24권11호
    • /
    • pp.79-89
    • /
    • 2008
  • 본 연구에서는 낙동강 유역에 분포하는 모래와 실트를 대상으로 실트 함유량에 따른 모래의 비배수 반복전단강도 특성을 파악하기 위하여 이방압밀비($K_c$=1.0, 1.5, 2.0)를 달리하여 일련의 비배수 반복삼축시험을 실시하였다. 시험결과 모든 $K_c$에서 실트 함유량이 증가함에 따라 반복전단응력비(CSR)가 감소하였으며, $K_c$가 증가할수록 실트 함유량 증가에 의한 CSR의 감소가 더 크게 나타났다. 전단시 발생되는 과잉간극수압은 $K_c$에 관계없이 실트 함유량 증가에 따라 초기 과잉간극수압이 크게 발생되어 CSR의 감소에 영향을 미쳤으며, 또한 압밀 후 시료의 skeleton 간극비를 산정하여 분석한 결과 실트 함유량 증가에 비례하여 전반적으로 skeleton 간극비가 크게 증가하여 초기 과잉간극수압의 증가와 더블어 CSR 감소의 주요원인으로 파악되었다.

Seismic performance of steel plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.1-18
    • /
    • 2019
  • In the present study, the behavior of steel plate shear walls (SPSW) with variable column flexural stiffness is experimentally and numerically investigated. Altogether six one-bay one-story specimens, three moment resisting frames (MRFs) and three SPSWs, were designed, fabricated and tested. Column flexural stiffness of the first specimen pair (one MRF and one SPSW) corresponded to the value required by the design codes, while for the second and third pair it was reduced by 18% and 36%, respectively. The quasi-static cyclic test result indicate that SPSW with reduced column flexural stiffness have satisfactory performance up to 4% story drift ratio, allow development of the tension field over the entire infill panel, and cause negligible column "pull-in" deformation which indicates that prescribed minimal column flexural stiffness value, according to AISC 341-10, might be conservative. In addition, finite element (FE) pushover simulations using shell elements were developed. Such FE models can predict SPSW cyclic behavior reasonably well and can be used to conduct numerical parametric analyses. It should be mentioned that these FE models were not able to reproduce column "pull-in" deformation indicating the need for further development of FE simulations with cyclic load introduction which will be part of another paper.