• 제목/요약/키워드: cyclic shear test

검색결과 427건 처리시간 0.028초

낙동강 모래의 실트함유량 변화에 따른 반복전단응력비 특성 (Characteristics of Cyclic Shear Stress Ratio by Silt Content for Nak-Dong River Sand)

  • 김영수;김대만
    • 대한토목학회논문집
    • /
    • 제29권6C호
    • /
    • pp.277-285
    • /
    • 2009
  • 실트함유량 변화에 따른 낙동강 모래의 반복전단강도 특성을 살펴보고자 낙동강 유역에 분포하는 모래와 실트를 채취하여 실트함유량 0~50%의 범위로 실내에서 재성형된 실트질 모래시료에 대하여 일련의 비배수 반복삼축실험을 실시하였다. 실험 결과, 실트함유량 변화에 따른 반복횟수(N) 10에서의 반복전단응력비(CSR)는 모든 상대밀도에서 실트함유량 5%에서 최대였고, 20%에서 최소를 보였다. 반복비($N/N_L$)에 따른 간극수압비(${\Delta}u/p^{\prime}$) 관계로 부터 분석된 간극수압의 발달 경향은 실트함유량에 따른 CSR 크기변화와는 무관하였다. 압밀 후 간극비(e)와 skeleton 간극비($e_s$)를 비교해 본 결과, 전반적으로 실트함유량에 따른 CSR의 변화 경향과 일치하여 실트함유량에 따른 CSR은 실트질 모래의 전단거동에 영향을 미치는 모래만의 간극비인 skeleton 간극비($e_{s}$)에 큰 영향을 받는 것으로 나타났다.

반복하중을 받는 해양 실트질 모래의 구속압에 따른 3차원 설계파괴곡선 산정 (3-Dimensional Design Failure Curve of Marine Silty Sand under Different Confining Pressures Subjected to Cyclic Loading)

  • 손수원;윤종찬;김진만
    • 한국지반환경공학회 논문집
    • /
    • 제23권12호
    • /
    • pp.25-31
    • /
    • 2022
  • 해양지반에 설치된 구조물은 육상지반에 설치된 구조물과는 달리 해상에서의 파하중, 풍하중, 그리고 조류하중 등과 같은 장기 반복하중을 고려해야 된다. 이에 해양지반에 설치된 구조물을 설계하기 위해서는 장기 반복하중을 받는 지반의 거동을 분석하는 것이 중요하다. 본 논문에서는 반복단순전단시험을 수행하여 구속압에 따른 장기반복하중에 대한 지반거동을 분석하고, 구속압에 따른 파괴특성을 쉽게 확인할 수 있는 3차원 설계파괴곡선을 작성하였다. 분석결과, 동일한 반복전단응력비와 평균전단응력비 조건이어도 구속압에 따라 설계파괴곡선의 위치가 차이가 있었으며, 파괴에 도달하는 반복하중횟수가 구속압에 영향을 받는 것을 확인하였다. 작성한 구속압에 따른 3차원 설계파괴곡선은 구속압에 따른 설계파괴곡선의 경향성과 대략적인 값을 추정할 수 있다.

세장한 대각보강 연결보의 전단강도 예측식 (Shear Strength Equation for Slender Diagonally Reinforced Coupling Beam)

  • 한상환;강진욱;한찬희
    • 한국지진공학회논문집
    • /
    • 제20권6호
    • /
    • pp.361-368
    • /
    • 2016
  • Coupling beams serve as primary source of energy dissipation in coupled shear wall systems during large earthquakes. However, the overestimation of the shear strength of diagonally reinforced coupling beams may be adverse effect on the seismic performance of coupled shear wall systems. In order to force coupling beams to properly work during earthquakes, coupling beams should be designed with accurate shear strength equations. The objective of this study is to propose the accurate shear strength equation for slender diagonally reinforced coupling beams. For this purpose, experimental tests were conducted using three diagonally reinforced coupling specimens with different amount of transverse reinforcement under reversed cyclic loads to evaluate the hysteretic behavior of the specimens. The test results show that transverse reinforcement of slender diagonally reinforced coupling beam affects the maximum strength and drift ratio.

반복단순전단 시험에 의한 패각질 모래의 액상화 강도 (Liquefaction Strength of Shelly Sand in Cyclic Simple Shear Test)

  • 윤여원;윤길림;최재권
    • 한국지반환경공학회 논문집
    • /
    • 제8권6호
    • /
    • pp.69-76
    • /
    • 2007
  • 해안 연약지반 개량공사에 사용되는 모래는 대부분 다소간의 패각을 함유하게 된다. 본 연구에서는 패각 함유량이 패각질모래의 액상화 저항에 미치는 영향을 연구하기 위하여 중량비에 의해 0%, 5%, 10%, 20%, 30%의 패각을 함유한 모래의 입도를 조성하고 건조퇴적 방법으로 상대밀도가 40%와 55%인 공시체를 성형하여 50kPa, 100kPa, 150kPa의 압밀유효연직응력으로 NGI형 직접단순전단시험기를 이용해서 반복단순전단시험을 수행하였다. 연구 결과, 압밀유효연직응력이 낮을 경우에는 상대밀도가 40%, 55% 모두 패각 함유량이 많아질수록 액상화강도가 크게 증가하는 경향을 보였다. 그러나 압밀유효연직응력이 높을 경우에는 상대 밀도가 40%일 경우 약간 증가하는 경향을 얻었으나 상대밀도가 55%일 경우에는 거의 일정한 값으로 수렴하는 결과를 얻었다. 그리고 상대밀도에 관계없이 압밀유효연직응력이 증가하면 액상화 저항이 감소하는 경향을 보였다. 또한 같은 압밀유효연직응력과 패각함유량에서 상대밀도가 높아질수록 액상화강도가 증가하는 것으로 나타났다.

  • PDF

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

Energy-based evaluation of liquefaction potential of uniform sands

  • Sonmezer, Yetis Bulent
    • Geomechanics and Engineering
    • /
    • 제17권2호
    • /
    • pp.145-156
    • /
    • 2019
  • Since behaviors of loose, dense, silty sands vary under seismic loading, understanding the liquefaction mechanism of sandy soils continues to be an important challenges of geotechnical earthquake engineering. In this study, 36 deformation controlled cyclic simple shear tests were performed and the liquefaction potential of the sands was investigated using three different relative densities (40, 55, 70%), four different effective stresses (25, 50, 100, 150 kPa) and three different shear strain amplitudes (2, 3.5, 5%) by using energy based approach. Experiments revealed the relationship between per unit volume dissipated energy with effective stress, relative density and shear strain. The dissipate energy per unit volume was much less affected by shear strain than effective stress and relative density. In other words, the dissipated energy is strongly dependent on relative density and effective stress. These results show that the dissipated energy per unit volume is very useful and may contain the non-uniform loading conditions of the earthquake spectrum. When multiple regression analysis is performed on experiment results, a relationship is proposed that gives liquefaction energy of sandy soils depending on relative density and effective stress parameters.

Seismic design of connections between steel outrigger beams and reinforced concrete walls

  • Deason, Jeremy T.;Tunc, Gokhan;Shahrooz, Bahram M.
    • Steel and Composite Structures
    • /
    • 제1권3호
    • /
    • pp.329-340
    • /
    • 2001
  • Cyclic response of "shear" connections between steel outrigger beams and reinforced concrete core walls is presented in this paper. The connections investigated in this paper consisted of a shear tab welded onto a plate that was connected to the core walls through multiple headed studs. The experimental data from six specimens point to a capacity larger than the design value. However, the mode of failure was through pullout of the embedded plate, or fracture of the weld between the studs and plate. Such brittle modes of failure need to be avoided through proper design. A capacity design method based on dissipating the input energy through yielding and fracture of the shear tab was developed. This approach requires a good understanding of the expected capacity of headed studs under combined gravity shear and cyclic axial load (tension and compression). A model was developed and verified against test results from six specimens. A specimen designed based on the proposed design methodology performed very well, and the connection did not fail until shear tab fractured after extensive yielding. The proposed design method is recommended for design of outrigger beam-wall connections.

대형진동삼축시험기를 이용한 암석재료의 동적변형특성에 관한 실험적 연구 (An Experimental Study on Dynamic Deformation Properties of Rock Materials using Large Triaxial Testing Apparatus)

  • 신동훈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.299-308
    • /
    • 2003
  • In order to investigate the dynamic deformation properties of rockfill materials in small strain level, cyclic triaxial tests were conducted using the large cyclic triaxial testing apparatus, which was developed by Water Resources Research Institute of KOWACO in 2001. Two types of rockfill materials consisting of granite and shale-sandstone were tested in this study. The test results show that G/G$\_$max/ of granite specimen decreases more than that of shale-sandstone with the increase of shear strain and the increase ratio in the maximum shear modulus G$\_$max/ of granite is bigger than the ratio of shale-sandstone.

  • PDF

Unidirectional cyclic shearing of sands: Evaluation of three different constitutive models

  • Oscar H. Moreno-Torres;Cristhian Mendoza-Bolanos;Andres Salas-Montoya
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.449-464
    • /
    • 2023
  • Advanced nonlinear effective stress constitutive models are started to be frequently used in one-dimensional (1D) and two-dimensional (2D) site response analysis for assessment of porewater generation and liquefaction potential in soft soil deposits. The emphasis of this research is on the assessment of the implementation of this category of models at the element stage. Initially, the performance of a coupled porewater pressure (PWP) and constitutive models were evaluated employing a catalogue of 40 unidirectional cyclic simple shear tests with a variety of relative densities between 35% and 80% and effective vertical stresses between 40 and 80 kPa. The authors evaluated three coupled constitutive models (PDMY02, PM4SAND and PDMY03) using cyclic direct simple shear tests and for decide input parameters used in the model, procedures are recommended. The ability of the coupled model to capture dilation as strength is valuable because the studied models reasonably capture the cyclic performance noted in the experiments and should be utilized to conduct effective stress-based 1D and 2D site response analysis. Sandy soils may become softer and liquefy during earthquakes as a result of pore-water pressure (PWP) development, which may have an impact on seismic design and site response. The tested constitutive models are mathematically coupled with a cyclic strain-based PWP generation model and can capture small-strain stiffness and large-strain shear strength. Results show that there are minor discrepancies between measured and computed excess PWP ratios, indicating that the tested constitutive models provide reasonable estimations of PWP increase during cyclic shear (ru) and the banana shape is reproduced in a proper way indicating that dilation and shear- strain behavior is well captured by the models.

파랑하중에 의한 해저지반의 응력변화에 대한 연구 (A Study of Variation of Wave-induced Stresses in a Seabed)

  • 장병욱;박영권;우철웅
    • 한국농공학회지
    • /
    • 제38권1호
    • /
    • pp.79-89
    • /
    • 1996
  • It is expected that the soil hehaviours in the seahed subjected to cyclic wave loads are much different from that on the ground Cyclic shear stresses developed below the ocean bed as a result of a passing wave train may progressively build up pore pressure in certain soils. Such build-up pore pressure may be developed dynamic behaviour such as liquefaction and significant deformation of the seabed. Currently available analytical and testing methods for the seabed subjected to cyclic wave loads are not general. The purpose of the study are to provide a test method in laboratory and to analyse the mechanism of wave-induced stresses and liquefactions potentials of the unsaturated silty marine sand. It is showed that the test set-up made especially for this study delivers exactly oscillatory wave pressures of the form of sine function. Laboratory test results defining the cyclic shear strength of the unsaturated porous medium that is homogenously sedimented. It is understood that the pore water pressure due to induced-waves is not accumulated as the wave number increases but reveals periodical change on the still water surface. The magnitude of the pore water pressure tends to be attenuated radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF