DOI QR코드

DOI QR Code

Characteristics of Cyclic Shear Stress Ratio by Silt Content for Nak-Dong River Sand

낙동강 모래의 실트함유량 변화에 따른 반복전단응력비 특성

  • 김영수 (경북대학교 공과대학 건설공학부 토목공학전공) ;
  • 김대만 (경북대학교 공과대학 건설공학부)
  • Received : 2009.06.22
  • Accepted : 2009.09.16
  • Published : 2009.11.30

Abstract

A series of undrained cyclic triaxial tests were carried out to investigate the cyclic shear stress strength characteristics of sands with respect to the silt content. Silty sand was collected around the basin of Nak-Dong River and remolded in laboratory with the range of silt content 0~50% in sand located. As results, with the change of silt content cyclic shear stress ratio (CSR) at N=10 showed the maximum value at 5% and the minimum at 20% in all relative density. The development tendency of the pore water pressure analyzed by the relationship cyclic ratio and pore water pressure ratio is unrelated the change of CSR varying silt content. Comparing the results of the void ratio and skeleton void ratio after consolidation, CSR varying silt content was much affected by skeleton void ratio which is known to affect shear behavior of silty sand.

실트함유량 변화에 따른 낙동강 모래의 반복전단강도 특성을 살펴보고자 낙동강 유역에 분포하는 모래와 실트를 채취하여 실트함유량 0~50%의 범위로 실내에서 재성형된 실트질 모래시료에 대하여 일련의 비배수 반복삼축실험을 실시하였다. 실험 결과, 실트함유량 변화에 따른 반복횟수(N) 10에서의 반복전단응력비(CSR)는 모든 상대밀도에서 실트함유량 5%에서 최대였고, 20%에서 최소를 보였다. 반복비($N/N_L$)에 따른 간극수압비(${\Delta}u/p^{\prime}$) 관계로 부터 분석된 간극수압의 발달 경향은 실트함유량에 따른 CSR 크기변화와는 무관하였다. 압밀 후 간극비(e)와 skeleton 간극비($e_s$)를 비교해 본 결과, 전반적으로 실트함유량에 따른 CSR의 변화 경향과 일치하여 실트함유량에 따른 CSR은 실트질 모래의 전단거동에 영향을 미치는 모래만의 간극비인 skeleton 간극비($e_{s}$)에 큰 영향을 받는 것으로 나타났다.

Keywords

References

  1. 김영수, 김대만(2008) 실트 함유량 증가에 따른 낙동강 모래의 반복전단거동 특성. 한국지반공학회논문집, 한국지반공학회, 제24권, 제11호, pp. 79-89.
  2. 황대진(1993) 실트를 포함하는 모래질 흙의 액상화강도에 관한 연구. 대한토목학회논문집, 대한토목학회, 제13권, 제2호, pp. 243-252.
  3. Annual Book of ASTM Standards (2007), Section Four Construction, Soil and Rock(I-1): D 420-D 5611, Vol. 04.08, pp. 518-541.
  4. Amini, F. and Qi, G.Z. (2000) Liquefaction testing of stratified silty sands. Jour. of Geotechnical and Geoenvironmental Engrg., ASCE, Vol. 126, No. 3, pp. 208-217. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(208)
  5. Baziar, M.H. (1987) Influence of the testing technique on the steady state lines of sand. MS thesis, Rensselaer Polytechnic Institute, Troy, New York.
  6. Chang, N.Y. (1990) Influence of fines content and plasticity on earthquake-induced soil liquefaction. Contract No. DOCW3988-C-0078, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss.
  7. Dobry, R., Vasquez-Herrera, A., Ramli, M., and Vucetic, M. (1985) Advances in the art of testing soils under cyclic conditions. Session Sponsored by Geotech. Engrg. Div., ASCE Convention, ASCE, New York, pp. 39-50.
  8. El Hosri, M.S., Biarez, H., and Hicher, P.Y. (1984) Liquefaction characteristics of silty clay. Proceedings of the 8th World Conference on Earthquake Engrg., San Francisco, California, 3, pp. 277-284.
  9. Japanese Industrial Standards (2000), Japanese Geotechnical Society, Division A(Civil Engineering and Architecture) 1224.
  10. Kaufman, L.P. (1981) Percentage silt content in sands and its effect on liquefaction potential. PhD Thesis, University of Colorado, Denver.
  11. Koester, J.P. (1992) Cyclic strength and pore pressure generation characteristics of fine-grained soils. PhD Thesis, University of Colorado, Denver.
  12. Koester, J.P. (1993) Effects of fines type and content on liquefaction potential of low-to-medium plasticity fine-grained soils. Proceedings of the 19th National Earthquake Conference, Central United States Earthquake Consortium Memphis, Tennessee, 1, pp. 67-75.
  13. Kuerbis, R., Negussey, D., and Vail, Y.P. (1988) Effect of gradaton and fines content on the undrained response of sand. Geotechnical Special Publication No. 21, pp. 330-345.
  14. Ladd, R.S. (1978) Preparing test specimens using undercompaction. Geotechnical Testing Journal, ASTM, Vol. 1, No. 1, pp. 16-23. https://doi.org/10.1520/GTJ10364J
  15. Lee, K.L. and Fitton, J.A. (1969) Factors affecting the cyclic loading strength of soil. ASTM STP 450, ASTM, pp. 71-95.
  16. Poran, J.C. and Rodriguez, J.A. (1989) Large ground deformations induced by the 1985 earthquake in Port Facilities in Chile. Proceedings form the 2nd US-Japan Workshop on liquefaction, Technical report NCEER-89-0032, pp. 118-130.
  17. Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M. (1985) Influence of SPT procedures in soil liquefaction resistance evaluations. Jour. of Geotechnical Engrg. Div., ASCE, Vol. 3, No. 12, pp. 1425-1445.
  18. Tianqiang, G. and Shamsher, P. (1999) Liquefaction of silts and siltclay mixtures. Journal of Geotechnical and Geoenvironmental Engrg, ASCE, Vol. 125, No. 8, pp. 706-710. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(706)
  19. Tokimatsu, K. and Yoshimi, Y. (1984) Criteria of soil liquefaction with SPT and fines content. Proceedings of the 8th World Conference on Earthquake Engrg., San Francisco, California, 3, pp. 255-262.
  20. Troncoso, J.H. (1990) Failure risks of abandoned tailings dams. Proceedings of International Symposium on Safety and Rehabilitation of Tailing Dams, Paris, pp. 82-89.
  21. Tuttle M., Law, T., Seeber, L., and Jacop, K. (1989) Liquefaction and ground failure in Ferland, Quebec triggered by the 1988 Saguenay earthquake. Proceedings form the 2nd US-Japan Workshop on liquefaction, Technical report NCEER-89-0032, pp. 102-117.
  22. Vaid, Y.P. and Negussey, D. (1988) Preparation of reconstituted sand specimens. Advanced triaxial testing of soil and rock, R. T. Doaghe, R. C. Chaney, and M. L. Silver, eds., ASTM, West Conshohocken, Pa., pp. 405-417.
  23. Vucetic, M. and Dobry, R. (1988) Cyclic triaxial strain-controlled testing of liquefiable sands. Advanced triaxial testing of soil and rock, R. T. Doaghe, R. C. Chaney, and M. L. Silver, eds., ASTM, West Conshohocken, Pa., pp. 475-485.