• Title/Summary/Keyword: cyclic resistance

Search Result 543, Processing Time 0.026 seconds

Cyclic Dipeptides from Bacillus vallismortis BS07 Require Key Components of Plant Immunity to Induce Disease Resistance in Arabidopsis against Pseudomonas Infection

  • Noh, Seong Woo;Seo, Rira;Park, Jung-Kwon;Manir, Md. Maniruzzaman;Park, Kyungseok;Sang, Mee Kyung;Moon, Surk-Sik;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.402-409
    • /
    • 2017
  • Cyclic dipeptides (CDPs) are one of the simplest compounds produced by living organisms. Plant-growth promoting rhizobacteria (PGPRs) also produce CDPs that can induce disease resistance. Bacillus vallismortis strain BS07 producing various CDPs has been evaluated as a potential biocontrol agent against multiple plant pathogens in chili pepper. However, plant signal pathway triggered by CDPs has not been fully elucidated yet. Here we introduce four CDPs, cyclo(Gly-L-Pro) previously identified from Aspergillus sp., and cyclo(L-Ala-L-Ile), cyclo(L-Ala-L-Leu), and cyclo(L-Leu-L-Pro) identified from B. vallismortis BS07, which induce disease resistance in Arabidopsis against Pseudomonas syringae infection. The CDPs do not directly inhibit fungal and oomycete growth in vitro. These CDPs require PHYTOALEXIN DEFICIENT4, SALICYLIC ACID INDUCTION DEFICIENT2, and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 important for salicylic acid-dependent defense to induce resistance. On the other hand, regulators involved in jasmonate-dependent event, such as ETHYLENE RECEPTOR1, JASMONATE RESPONSE1, and JASMONATE INSENSITIVE1, are necessary to the CDP-induced resistance. Furthermore, treatment of these CDPs primes Arabidopsis plants to rapidly express PATHOGENESIS-RELATED PROTEIN4 at early infection phase. Taken together, we propose that these CDPs from PGPR strains accelerate activation of jasmonate-related signaling pathway during infection.

The Effect of $Bi(OH)_3$ on Corrosion-Resistant Properties of Automotive Epoxy Primers

  • Yang, Wonseog;Min, Sungki;Hwang, Woon-suk
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.370-374
    • /
    • 2008
  • In this study, we evaluated anti-corrosion properties of both commercial unleaded and lead epoxy primer for automotive substrate before applying to actual painting lines by salt spray test, and cyclic corrosion test, potentiodynamic test and electrochemical impedance spectroscopy. The difference in the corrosion resistance between automotive epoxy primers contained $Bi(OH)_{3}$ and leaded one was investigated. And it was also discussed the effect of zinc phosphate pretreatment to the epoxy primers. The specimen coated epoxy primer contained $Bi(OH)_{3}$ showed 0.5 V higher corrosion potential than that of bare steel. The result of salt spray test did not indicate remarkable difference of corrosion resistance in all specimens above $10{\mu}m$ thickness up to 1200 hours. In the cyclic corrosion test, epoxy primers contained $Bi(OH)_{3}$ on phosphated substrate performed good corrosion properties until 800 hours. The epoxy primer contained $Bi(OH)_{3}$ performed the equivalent corrosion resistance as leaded coating on phosphated steel, but slightly inferior to that of leaded on bare steel. These results show that the pre-treatment of zinc phosphate is effective as well as pigment changing in performing anti-corrosion properties in automotive bodies.

A study on the formation of oxide scale on the stainless steel to improve the oxidation resistance (스테인레스강의 내산화성 향상을 위한 스케일 형성에 관한 연구)

  • 김대환;김재철;김길무
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.6
    • /
    • pp.333-342
    • /
    • 1995
  • Stainless steels are widely selected as commercial engineering materials mainly because of their excellent corrosion resistance, oxidation resistance and strength. Because the manufacturing temperature of stainless steels is relatively high, the chemical and physical properties of the oxide film which was formed on the stainless steels are of importance in determining the rate of oxidation and the life of equipment exposed to high temperature oxidizing environments. In this study, the oxidation behavior of S. S. 304 and S. S. 430 added by a small amount of oxygen active elements(each +0.5wt% Hf and Y) was studied to improve oxidation resistance. The results of cyclic and isothermal oxidation on S. S. 304 added by OAE showed relatively poor oxidation resistance due to spallations and cracks of $Cr_2O_3$ layer. But all S. S. 430+0.5wt% OAE maintained constant oxidation rates and stable oxide layers at high temperature environment. Especially S. S. 430+0.5wt% Y formed a $Cr_2O_3$ oxide layer and improved cyclic oxidation resistance preventing loss of protective layers about 1000 hours at $1000^{\circ}C$

  • PDF

Systems to prevent the load resistance loss of pallet racks exposed to cyclic external force

  • Heo, Gwanghee;Kim, Chunggil;Baek, Eunrim;Jeon, Seunggon
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • This study aims to determine the cause of the load resistance loss in storage racks that can be attributed to external forces such as earthquakes and to improve safety by developing reinforcement systems that can prevent load resistance loss. To this end, a static cyclic loading test was performed on pallet racks commonly used in logistics warehouses. The test results indicated that a pallet rack exposed to an external force loses more than 50% of its load resistance owing to the damage caused to column-beam joints. Three reinforcement systems were developed for preventing load resistance loss in storage racks exposed to an external force and for performing differentiated target functions: column reinforcement device, seismic damper, and viscoelastic damper. Shake table testing was performed to evaluate the earthquake response and verify the performance of these reinforcement systems. The results confirmed that, the maximum displacement, which causes the loss of load resistance and the permanent deformation of racks under external force, is reduced using the developed reinforcement devices. Thus, the appropriate selection of the developed reinforcement devices by users can help secure the safety of the storage racks.

CPT-based p-y analysis for mono-piles in sands under static and cyclic loading conditions

  • Kim, Garam;Kyung, Doohyun;Park, Donggyu;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.313-328
    • /
    • 2015
  • In the present study, a CPT-based p-y analysis method was proposed for offshore mono-piles embedded in sands. Static and cyclic loading conditions were both taken into account for the proposed method. The continuous soil profiling capability of CPT was an important consideration for the proposed method, where detailed soil profile condition with depth can be readily incorporated into the analysis. The hyperbolic function was adopted to describe the non-linear p-y curves. For the proposed hyperbolic p-y relationship, the ultimate lateral soil resistance $p_u$ was given as a function of the cone resistance, which is directly introduced into the analysis as an input data. For cyclic loading condition, two different cyclic modification factors were considered and compared. Case examples were selected to check the validity of the proposed CPT-based method. Calculated lateral displacements and bending moments from the proposed method were in good agreement with measured results for lateral displacement and bending moment profiles. It was observed the accuracy of calculated results for the conventional approach was largely dependent on the selection of friction angle that is to be adopted into the analysis.

Low Cycle Fatigue Behavior of 429EM Stainless Steel at Elevated Temperature (429EM 스테인리스강의 고온 저주기 피로 거동)

  • Lee, Keum-Oh;Yoon, Sam-Son;Hong, Seong-Gu;Kim, Bong-Soo;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.427-434
    • /
    • 2004
  • Ferritic stainless steel is recently used in high temperature structures because of its good properties of thermal fatigue resistance, corrosion resistance, and low price. Tensile and low-cycle fatigue (LCF) tests on 429EM stainless steel used in exhaust manifold were performed at several temperatures from room temperature to 80$0^{\circ}C$. Elastic Modulus, yield strength, and ultimate tensile strength monotonically decreased when temperature increased. Cyclic hardening occurred considerably during the most part of the fatigue life. Dynamic strain aging was observed in 200~50$0^{\circ}C$, which affects the cyclic hardening behavior. Among the fatigue parameters such as plastic strain amplitude, stress amplitude, and plastic strain energy density (PSED), PSED was a proper fatigue parameter since it maintained at a constant value during LCF deformation even though cyclic hardening occurs considerably. A phenomenological life prediction model using PSED was proposed considering the influence of temperature on fatigue life.

Investigation of a new steel-concrete connection for composite bridges

  • Papastergiou, Dimitrios;Lebet, Jean-Paul
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.573-599
    • /
    • 2014
  • A new type of connection for steel-concrete composite bridges was developed by the Steel Structures Laboratory of Ecole Poytechinque $F{\acute{e}}d{\acute{e}}rale$ de Lausanne. Resistance to longitudinal shear is based on the development of shear stresses in the confined interfaces which form the connection. Confinement is provided by the reinforced concrete slab which encloses the connection and restrains the uplift (lateral separation) of the interfaces by developing normal stresses. The experimental investigation of the interfaces, under static and cyclic loading, enabled the development of the laws describing the structural behaviour of each interface. Those laws were presented by the authors in previous papers. The current paper focuses on the continuity of the research. It presents the experimental investigation on the new connection by means of push-out tests on specimens submitted to static and cyclic shear loading. Investigation revealed that the damage in the connection, due to cyclic loading, is expressed by the accumulation of a residual slip. A safe fatigue failure criterion is proposed for the connection which enabled the verification of the connection for the fatigue limit state with respect to the limit of fatigue. A numerical model is developed which takes into account the laws describing the interface behaviour and the analytical expressions for the confinement effect, the latter obtained by performing finite element analysis. This numerical model predicts the shear resistance of the connection and enables to assess its fatigue limit which is necessary for the fatigue design proposed.

Effect of Seawater Temperature on the Cyclic Potentiodynamic Polarization Characteristics and Microscopic Analysis on Damage Behavior of Super Austenitic Stainless Steel (슈퍼오스테나이트 스테인리스강의 순환동전위 분극특성에 미치는 해수온도의 영향과 손상 거동에 관한 미시적 분석)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.412-425
    • /
    • 2021
  • Because austenitic stainless steel causes localized corrosion such as pitting and crevice corrosion in environments containing chlorine, corrosion resistance is improved by surface treatment or changes of the alloy element content. Accordingly, research using cyclic potentiodynamic polarization experiment to evaluate the properties of the passivation film of super austenitic stainless steel that improved corrosion resistance is being actively conducted. In this investigation, the electrochemical properties of austenitic stainless steel and super austenitic stainless steel were compared and analyzed through cyclic potentiodynamic polarization experiment with varying temperatures. Repassivation properties were not observed in austenitic stainless steels at all temperature conditions, but super austenitic stainless steels exhibited repassivation behaviors at all temperatures. This is expressed as α values using a relational formula comparing the localized corrosion rate and general corrosion rate. As the α values of UNS S31603 decreased with temperature, the tendency of general corrosion was expected to be higher, and the α value of UNS N08367 increased with increasing temperatures, so it is considered that the tendency of localized corrosion was dominant.

The Effect of Heat Input on Grooving Corrosion Behavior in the Welds of Electric Resistance Welding Steel Pipe (ERW 강관 용접부의 홈부식거동에 미치는 입열량의 영향)

  • Lee, B.W.;Lee, J.S.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2007
  • The microstructure and electrochemical analysis of welds of electric resistance welding(ERW) pipe were investigated. The direction of metal flow line in HAZ of ERW pipe shifted to the inner(or outer) surface of pipe by plastic deformation during welding. The lowest heat input welds of ERW pipe was showed crack by liquid penetrant testing. Accelerated corrosion test by constant current density of 20mA/$cm^{2}$ developed groove at the welds of ERW pipe and the measured grooving factors were about $1.2{\sim}1.5$. Corrosion potential of base metal obtained by cyclic polarization in artificial sea water(3.5wt.% NaCl solution) was 100mV higher than that of weld metal of ERW pipe.

  • PDF

Small Scale Modelling Experiments for Evaluating Lateral Resistance of Block-Type Breakwater II: A Single Block Reinforced with Piles under Cyclic Lateral Loads (블록식 방파제의 수평저항력 평가를 위한 실내모형실험 II : 보강형 싱글블럭의 반복수평 하중에 대한 저항)

  • Kang, Gichun;Kim, Jiseong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.105-112
    • /
    • 2021
  • In the case of harbor structures, it is important to understand the characteristics of structures that are subjected to repeated loads as they are structures that receive repetitive loads such as wave pressure as well as static loads. In this study, the lateral resistance according to the pile embeded depth of the block breakwater reinforced with piles by cyclic lateral loads was obtained through an model experiment. As the depth of embedment of the pile increased, the lateral resistance showed a tendency to increase. As the load was repeated, the gradient of the lateral resistance gradually appeared to be gentle. The bending moment of the rear pile was larger than that of the front pile. The bending moment of piles in the ground was similar to that when the pile head was free in the cohesionless of Broms (1964).