• Title/Summary/Keyword: cyclic material property

Search Result 76, Processing Time 0.028 seconds

Preliminary Study on Linear Dynamic Response Topology Optimization Using Equivalent Static Loads (등가정하중을 사용한 선형 동적반응 위상최적설계 기초연구)

  • Jang, Hwan-Hak;Lee, Hyun-Ah;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1401-1409
    • /
    • 2009
  • All the forces in the real world act dynamically on structures. Design and analysis should be performed based on the dynamic loads for the safety of structures. Dynamic (transient or vibrational) responses have many peaks in the time domain. Topology optimization, which gives an excellent conceptual design, mainly has been performed with static loads. In topology optimization, the number of design variables is quite large and considering the peaks is fairly costly. Topology optimization in the frequency domain has been performed to consider the dynamic effects; however, it is not sufficient to fully include the dynamic characteristics. In this research, linear dynamic response topology optimization is performed in the time domain. First, the necessity of topology optimization to directly consider the dynamic loads is verified by identifying the relationship between the natural frequency of a structure and the excitation frequency. When the natural frequency of a structure is low, the dynamic characteristics (inertia effect) should be considered. The equivalent static loads (ESLs) method is proposed for linear dynamic response topology optimization. ESLs are made to generate the same response field as that from dynamic loads at each time step of dynamic response analysis. The method was originally developed for size and shape optimizations. The original method is expanded to topology optimization under dynamic loads. At each time step of dynamic analysis, ESLs are calculated and ESLs are used as the external loads in static response topology optimization. The results of topology optimization are used to update the design variables (density of finite elements) and the updated design variables are used in dynamic analysis in a cyclic manner until the convergence criteria are satisfied. The updating rules and convergence criteria in the ESLs method are newly proposed for linear dynamic response topology optimization. The proposed updating rules are the artificial material method and the element elimination method. The artificial material method updates the material property for dynamic analysis at the next cycle using the results of topology optimization. The element elimination method is proposed to remove the element which has low density when static topology optimization is finished. These proposed methods are applied to some examples. The results are discussed in comparison with conventional linear static response topology optimization.

Characteristics of $LaCrO_3$-Dispersed Cr Alloy for Metallic Interconnector of Solid Oxide Fuel Cell (고체 산화물 연료전지 금속 연결재용 $LaCrO_3$가 분산된 Cr 합금의 특성 연구)

  • Jeon, Kwang-Sun;Song, Rak-Hyun;Shin, Dong-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.570-576
    • /
    • 1999
  • $LaCrO_3$-dispersed Cr alloys for metallic interconnector of solid oxide fuel cell have been studied as function of $LaCrO_3$ content in the range of 5 to 25 vol.% in order to examine the electric conductivity, the oxidation property and the thermal expansion behavior of these alloys. The $LaCrO_3$-dispersed Cr alloys showed high electrical conductivities of $3~5\times10^4$ S/cm at room temperature, and as the $LaCrO_3$content increased the conductivity decreased slightly. During the cyclic oxidation test at $1100^{\circ}C$, the weight change of the Cr alloys decreased with increasing number of oxidation cycle except first cycle, which is attributed to the vaporization of the oxide scale. More addition of the $LaCrO_3$ content reduced also the weight change of the Cr alloys. These mean that the oxide scale formed at the surface of the Cr alloy becomes stable with increasing number of oxidation cycle and$LaCrO_3$ content. The measured thermal expansion of the Cr alloy was well fitted to that of 8 mol% $Y_2O_3$-stabilized $ZrO_2$ electrolyte. These results demonstrate that $LaCrO_3$-dispersed Cr alloy is a useful material for metallic interconnector of solid oxide fuel cell.

  • PDF

Evaluation and Comparison of Nanocomposite Gate Insulator for Flexible Thin Film Transistor

  • Kim, Jin-Su;Jo, Seong-Won;Kim, Do-Il;Hwang, Byeong-Ung;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.278.1-278.1
    • /
    • 2014
  • Organic materials have been explored as the gate dielectric layers in thin film transistors (TFTs) of backplane devices for flexible display because of their inherent mechanical flexibility. However, those materials possess some disadvantages like low dielectric constant and thermal resistance, which might lead to high power consumption and instability. On the other hand, inorganic gate dielectrics show high dielectric constant despite their brittle property. In order to maintain advantages of both materials, it is essential to develop the alternative materials. In this work, we manufactured nanocomposite gate dielectrics composed of organic material and inorganic nanoparticle and integrated them into organic TFTs. For synthesis of nanocomposite gate dielectrics, polyimide (PI) was explored as the organic materials due to its superior thermal stability. Candidate nanoprticles (NPs) of halfnium oxide, titanium oxide and aluminium oxide were considered. In order to realize NP concentration dependent electrical characteristics, furthermore, we have synthesized the different types of nanocomposite gate dielectrics with varying ratio of each inorganic NPs. To analyze gate dielectric properties like the capacitance, metal-Insulator-metal (MIM) structures were prepared together with organic TFTs. The output and transfer characteristics of organic TFTs were monitored by using the semiconductor parameter analyzer (HP4145B), and capacitance and leakage current of MIM structures were measured by the LCR meter (B1500, Agilent). Effects of mechanical cyclic bending of 200,000 times and thermally heating at $400^{\circ}C$ for 1 hour were investigated to analyze mechanical and thermal stability of nanocomposite gate dielectrics. The results will be discussed in detail.

  • PDF

Electrochemical Property of CNT/Co3O4 Nanocomposite for Anode of Lithium Batteries (리튬 이차전지 음극용 CNT/Co3O4 나노복합체의 전기화학적 특성)

  • Yoon, Dae Ho;Park, Yong Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.187-192
    • /
    • 2014
  • In this article, we report the fabrication and characterization of $CNT/Co_3O_4$ nanocomposite for lithium ion batteries. We expected that the composition with CNT is effective method to compensate for the low electronic conductivity of $Co_3O_4$ and suppress the stress from phase transition of $Co_3O_4$ during cycling. $CNT/Co_3O_4$ nanocomposites were composed of nano-sized $Co_3O_4$ particles, which were homogeneously distributed on the surface of CNTs. The $CNT/Co_3O_4$ electrode presented higher capacity than commercial graphite, good rate capability and stable cyclic performance. This implies that the $CNT/Co_3O_4$ could be a promising anode material for lithium ion batteries.

Strategic design for oxide-based anode materials and the dependence of their electrochemical properties on morphology and architecture

  • Gang, Yong-Muk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.73-73
    • /
    • 2012
  • Modern technology-driven society largely relies on hybrid electric vehicles or electric vehicles for eco-friendly transportation and the use of high technology devices. Lithium rechargeable batteries are the most promising power sources because of its high energy density but still have a challenge. Graphite is the most widely used anode material in the field of lithium rechargeable batteries due to its many advantages such as good cyclic performances, and high charge/discharge efficiency in the initial cycle. However, it has an important safety issue associated with the dendritic lithium growth on the anode surface at high charging current because the conventional graphite approaches almost 0 V vs $Li/Li^+$ at the end of lithium insertion. Therefore, a fundamental solution is to use an electrochemical redox couple with higher equilibrium potentials, which suppresses lithium metal formation on the anode surface. Among the candidates, $Li_4Ti_5O_{12}$ is a very interesting intercalation compound with safe operation, high rate capability, no volume change, and excellent cycleability. But the insulating character of $Li_4Ti_5O_{12}$ has raised concerns about its electrochemical performance. The initial insulating character associated with Ti4+ in $Li_4Ti_5O_{12}$ limits the electronic transfer between particles and to the external circuit, thereby worsening its high rate performance. In order to overcome these weak points, several alternative synthetic methods are highly required. Hence, in this presentation, novel ways using a synergetic strategy based on 1D architecture and surface coating will be introduced to enhance the kinetic property of Ti-based electrode. In addition, first-principle calculation will prove its significance to design Ti-based electrode for the most optimized electrochemical performance.

  • PDF

Static and Fatigue Flexural Tests of Ductile High-performance Fiber Reinforced Cementitious Composites (고인성 섬유보강 콘크리트의 정적 및 피로 휨시험)

  • Shin, Kyung-Joon;Lee, Do-Keun;Lee, Kyoung-Chan;Kim, Sung-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.602-608
    • /
    • 2021
  • Recently, research and development has been conducted to impart high performance and functionality to concrete materials by mixing various reinforcing materials into the matrix. Ductile fiber reinforced concrete using a large amount of fibers shows a distributed multiple cracking behavior, and various studies are being conducted on this material. However, research is focused on static behavioral analysis but studies on cyclic behaviors are not sufficient. In this study, beams were made of ductile fiber reinforced concrete with various fiber contents, and static and fatigue flexural tests were performed. As a result, the effect of fiber content on the flexural behavior was analyzed. Also, the applied load level and fatigue life relationship of ductile fiber reinforced concrete was proposed. Concrete with high ductile property could be achieved with a fiber content of 2%. When 0.5% fiber was more added, the maximum flexural strength was similar, but the flexural toughness is nearly doubled. On the other hand, there was no significant difference in the fatigue life of these two mixtures.

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

Evaluation of the Corrosion Property on the Welded Zone of Cast Steel Piston Crown with Types of Electrode (용접재료 별 주강 피스톤 크라운 용접부위의 부식 특성에 대한 평가)

  • Moon, Kyung-Man;Kim, Yun-Hae;Lee, Myeong-Hoon;Baek, Tae-Sil;Kim, Jin-Gyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.356-362
    • /
    • 2014
  • Wear and corrosion of the engine parts surrounded with combustion chamber is more serious compared to the other parts of the engine because temperature of the exhaust gas in a combustion chamber is getting higher and higher with increasing of using the heavy oil of low quality. Therefore, an optimum repair weldment as well as an available choice of the base metal for these parts are very important to prolong their lifetime in a economical point of view. It reported that there was an experimental result for repair weldment on the forged steel which would be generally used with piston crown material, however, it is considered that there is no study for the repair weldment on the cast steel of piston crown material. In this study, four types of electrodes such as 1.25Cr-0.5Mo, 0.5Mo Inconel 625 and 718 were welded with SMAW and GTAW methods on the cast steel which would be generally used with piston crown material. And the corrosion properties of weld metal, heat affected zone and base metal were investigated using electrochemical methods such as measurement of corrosion potential, anodic polarization curves, cyclic voltammogram and impedance etc. in 35% $H_2SO_4$ solution. In the cases of Inconel 625, 718, the weld metals and base metals exhibited the best and worst corrosion resistance respectively, however, 1.25Cr-0.5Mo and 0.5Mo indicated that corrosion resistance of the base metal was better than the weld metal. And the weld metal welded with electrodes of Inconel 625 revealed the best corrosion resistance among the electrodes, and Inconel 718 followed the Inconel 625. Hardness relatively also indicated higher value in the weld metal compared to heat affected zone and base metal. In particular, Inconel 718 indicated the highest value of hardness compared to other electrodes in the heat affected zone.

Strength Performance Evaluation of Deck Using Reinforced Plastic Connector (강화플라스틱 연결구를 이용한 데크의 내력 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, Dong-Heub;Kim, Kyung-Dae;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.12-18
    • /
    • 2013
  • Existing wood decks brings out negligent accident because fastener can be pulled-out by cyclic load of pedestrians. When deck and joist are connected, it also causes the problems, which are cracking of wood decks and rapid decay by material of fastener. In this study, strength property of deck unit using reinforced plastic connector made by domestic A company was evaluated. Southern yellow pine (Pinus palustris Miller) were used for deck material. Bending strength of deck units were implemented for fastener type and joist spacing (400, 600 mm). In the result, carbon steel screw into reinforced plastic connector was the best in average bending strength(Joist spacing : 400, 600 mm). In the result of bending strength for joist-width (40, 50, 70, 80 mm), the average maximum bending strength was measured when the joist spacing was 40 mm.

Electrochemical performance of the flexible supercapacitor based on nanocarbon material/conductive polymer composite and all solid state electrolyte (탄소나노복합재료와 전고체 전해질 기반의 유연성 슈퍼커패시터의 전기화학적 특성 분석)

  • Kim, Chang Hyun;Kim, Yong Ryeol;Jeong, Hyeon Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.200-207
    • /
    • 2019
  • In this study, flexible supercapacitor based on the all solid state electrolyte with PVA (polyvinyl alcohol)-$H_3PO_4$, ionic liquid as a BMIMBF4 (1-buthyl-3-methylimidazolium tetrafluoroborate) and reduced graphene oxide/conductive polymer composite was fabricated and characterized electrochemical properties with function of its flexibility. In order to measure and compare that electrochemical performances (including cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS) and galvanostatic charge/discharge,after 0~100th bending test) of prepared flexible supercapacitor based on reduced graphene oxide/conducting polymer composite and all solid state electrolyte, we have conducted press machine with constant pressure ( 0.01/cm2) for $100^{th}$ bending test. As a result, specific capacitance of the flexible supercapacitor was 43.9 F/g which value decreased to 42.0 and 40.1 F/g after 50 and $100^{th}$ bending test, respectively. This result exhibited that decreased electrochemical property of the flexible supercapacitor effected on physical stress on the electrode after repeated bending test. In addition, we have measured that electrode surface morphology by SEM to prove its decreased electrochemical property of the flexible supercapacitor after prolonged bending test.