• Title/Summary/Keyword: cyclic corrosion

Search Result 225, Processing Time 0.025 seconds

Electrochemical Evaluation on Corrosion Resistance of Anti-corrosive Paints

  • Moon, Kyung-Man;Lee, Myung-Hoon;Kim, Yun-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.387-394
    • /
    • 2009
  • It has been observed that coated steel structures are rapidly deteriorated than designed lifetime due to acid rain caused by air pollution etc.. Therefore improvement of corrosion resistance of anti-corrosive paint is very important in terms of safety and economic point of view. In this study corrosion resistance for five kinds of anti-corrosive paints including acryl, fluorine and epoxy resin series were investigated with electrochemical methods such as corrosion potential, polarization curves, impedance and cyclic voltammogram measurements etc.. There were somewhat good relationships between values measured by electrochemical methods such as corrosion current density obtained by cathodic and anodic polarization curves, value of impedance estimated with AC impedance, and polarization resistance on the cyclic voltammogram, for example, corrosion current density was decreased with increasing of values of impedance and polarization resistance on the cyclic voltammogram. However their relationships between corrosion current density and corrosion potential were not well coincided each other. Consequently it is considered that although a corrosion potential of F101 of fuoric resin series shifted to negative direction than other anti-corrosive paints, its corrosion resistance, indicating on the cathodic and anodic polarization curves, AC impedance curves and cyclic voltammogram, was the most superior to other paints, whereas A100 containing arcylic resin showed a relatively poor corrosion resistance compared to other paints.

Cut Edge Corrosion of Painted Zn and 55%Al-Zn Coated Steels under Alternate Wetting and Drying

  • Nishikata, A.;Tsuda, T.;Tsuru, T.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.34-38
    • /
    • 2010
  • Electrochemical study on cut edge corrosion of prepainted Zn coated (GI) and 55%Al-Zn coated (GL) steels has been performed in wet-dry cyclic conditions. Maximum width of delaminated polymer coating from the cut edge for GI and GL specimens was evaluated under wet-dry cyclic conditions. The cyclic tests were carried out for 1000 h by changing of relative humidity, where the salt of NaCl was deposited on the specimen every 48 h. The cut edge corrosion test under NaCl deposit indicated that the delamination of the GL specimen progresses at a higher rate than the GI. The electrochemical corrosion monitoring was also performed under condition of alternate exposure to immersion in NaCl solution and drying at 60%RH and $25^{\circ}C$. On the basis of the results of the delamination tests and electrochemical measurements, the mechanism of cut edge corrosion for GI and GL were discussed.

Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.235-251
    • /
    • 2019
  • Corrosion of reinforcement is the greatest threat to the safety of existing reinforced concrete (RC) structures. Most of the olden structures are gravity load designed (GLD) and are seismically deficient. In present study, investigations are carried out on corrosion damaged GLD beam-column sub-assemblages under reverse cyclic loading, in order to evaluate their seismic performance. Five GLD beam-column sub-assemblage specimens comprising of i) One uncorroded ii) Two corroded iii) One uncorroded strengthened with steel bracket and haunch iv) One corroded strengthened with steel bracket and haunch, are tested under reverse cyclic loading. The performances of these specimens are assessed in terms of hysteretic behaviour, energy dissipation and strength degradation. It is noted that the nature of corrosion i.e. uniform or pitting corrosion and its location have significant influence on the behaviour of corrosion damaged GLD beam-column sub-assemblages. The corroded specimens with localised corrosion pits showed in-cyclic strength degradation. The study also reveals that external strengthening which provides an alternate force path but depends on the strength of the existing reinforcement bars, is able to mitigate the seismic risk of corroded GLD beam-column sub-assemblages to the level of control uncorroded GLD specimen.

Evaluation of Corrosion Protection for Epoxy and Urethane Coating by EIS under Various Cyclic Corrosion Tests

  • Hyun, Jonghun;Shon, Minyoung
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.95-100
    • /
    • 2011
  • Protective coatings play an important role in the protection of metallic structures against corrosive environment. The main function of anticorrosive coating is to prevent the materials from corrosive agents, such as water, oxygen and ions. In the study, the corrosion protection properties of urethane and epoxy coating systems were evaluated using EIS methods exposed to the corrosion acceleration test such as Norsok M501, Prohesion and hygrothermal cyclic test. AFM analysis of the coating systems was carried out to monitor the change of roughness of coatings. Urethane coating system was more stable than the epoxy coating under given cyclic conditions. Water uptake into the urethane coatings was less than that into the epoxy coating. The urethane coating system showed better corrosion protection than epoxy coating system based on the changes of the impedance modulus at low frequency region with exposure time. Consequently, the corrosion protection properties of the epoxy and urethane coatings was well correspond with their surface roughness changes and water uptakes.

Effect of Seawater Temperature on the Cyclic Potentiodynamic Polarization Characteristics and Microscopic Analysis on Damage Behavior of Super Austenitic Stainless Steel (슈퍼오스테나이트 스테인리스강의 순환동전위 분극특성에 미치는 해수온도의 영향과 손상 거동에 관한 미시적 분석)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.412-425
    • /
    • 2021
  • Because austenitic stainless steel causes localized corrosion such as pitting and crevice corrosion in environments containing chlorine, corrosion resistance is improved by surface treatment or changes of the alloy element content. Accordingly, research using cyclic potentiodynamic polarization experiment to evaluate the properties of the passivation film of super austenitic stainless steel that improved corrosion resistance is being actively conducted. In this investigation, the electrochemical properties of austenitic stainless steel and super austenitic stainless steel were compared and analyzed through cyclic potentiodynamic polarization experiment with varying temperatures. Repassivation properties were not observed in austenitic stainless steels at all temperature conditions, but super austenitic stainless steels exhibited repassivation behaviors at all temperatures. This is expressed as α values using a relational formula comparing the localized corrosion rate and general corrosion rate. As the α values of UNS S31603 decreased with temperature, the tendency of general corrosion was expected to be higher, and the α value of UNS N08367 increased with increasing temperatures, so it is considered that the tendency of localized corrosion was dominant.

The Effect of $Bi(OH)_3$ on Corrosion-Resistant Properties of Automotive Epoxy Primers

  • Yang, Wonseog;Min, Sungki;Hwang, Woon-suk
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.370-374
    • /
    • 2008
  • In this study, we evaluated anti-corrosion properties of both commercial unleaded and lead epoxy primer for automotive substrate before applying to actual painting lines by salt spray test, and cyclic corrosion test, potentiodynamic test and electrochemical impedance spectroscopy. The difference in the corrosion resistance between automotive epoxy primers contained $Bi(OH)_{3}$ and leaded one was investigated. And it was also discussed the effect of zinc phosphate pretreatment to the epoxy primers. The specimen coated epoxy primer contained $Bi(OH)_{3}$ showed 0.5 V higher corrosion potential than that of bare steel. The result of salt spray test did not indicate remarkable difference of corrosion resistance in all specimens above $10{\mu}m$ thickness up to 1200 hours. In the cyclic corrosion test, epoxy primers contained $Bi(OH)_{3}$ on phosphated substrate performed good corrosion properties until 800 hours. The epoxy primer contained $Bi(OH)_{3}$ performed the equivalent corrosion resistance as leaded coating on phosphated steel, but slightly inferior to that of leaded on bare steel. These results show that the pre-treatment of zinc phosphate is effective as well as pigment changing in performing anti-corrosion properties in automotive bodies.

Study on Hygrothermal Degradation and Corrosion Protection of Epoxy Coatings Cured by Different Amine Based Curing Agents

  • Shon, Min-Young;Kwon, Huck-Sang
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.201-208
    • /
    • 2010
  • Epoxy coatings cured by different amine based curing agents have been prepared. Atomic force microscopy (AFM) has been used to monitor the surface topology changes of epoxy coatings before and after hygrothermal cyclic test. The glass transition temperature ($T_g$) and coefficient of thermal expansion (CTE) of the epoxy coating were measured by Thermo-mechanical Analysis (TMA). The Electrochemical impedance spectroscopy (EIS) with hygrothermal cyclic test has been introduced to evaluate the corrosion protection of the epoxy coatings. In conclusion, thermal properties of epoxy coatings were in good agreement with the results of corrosion protection of epoxy coated carbon steel obtained result by EIS with hygrothermal cyclic test. The relationship between thermal properties, surface roughness changes and corrosion protection of epoxy coatings are discussed in this study.

Evaluation of Life Time for Anti-Corrosive Methods for Marine Steel Sheet by Cyclic Corrosion Test (실내 가속부식시험을 통한 해양 강관합성 말뚝의 방식 기법 수명 평가)

  • Park, J.W.;Lee, J.G.;Lee, K.W.;Kim, J.H.;Jung, M.K.;Lee, J.H.
    • Corrosion Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.243-250
    • /
    • 2009
  • When a steel sheet pipe applied to marine environment, an anti-corrosive coating should be treated to obtain long-term life-time for steels, especially, splash zone. Although anti-corrosive property of coatings is required to be tested in real marine environment, it is difficult because of long test time such as 20 years or more time. Therefore, we used cyclic corrosion tester in a laboratory, which has similar conditions with salt-dry-wet process such as real marine environment. Anti-corrosive properties of the coatings and two steels were tested their anti-corrosive properties under cyclic corrosion test conditions(KS D ISO 14993) and the results were compared with estimate life-time in real marine environment. According to cyclic corrosion test, accelerated corrosive factor of each anti-corrosive coating was investigated accelerated corrosive factor from impedance with EIS method. Accelerated corrosive factor of type SS400 carbon steel and A690 was also investigated their accelerated corrosive factor from the regression curves of weigh loss results. One of the anti-corrosive coatings showed about 50 years life-time compared with standard sample life-time. Carbon steel SS400 showed from 0.1 mm/yr to 0.06 mm/yr as its corrosion rate.

Evaluate the Concrete mix by Type Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Cyclic Wet and Dry Condition (인공해수 건습반복조건에 따른 콘크리트배합별 부식촉진시험법과 염화물 침투해석평가)

  • Park, Sang-Soon;Kim, Min-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.211-218
    • /
    • 2013
  • Cyclic wet and dry conditions in the marine environment structures corrosion is known to be the fastest rising. For that reason, accelerated corrosion test methods for the reproduction of tidal environment has been actively conducted. However, many studies have estimated threshold value for steel corrosion or concentrated in chloride penetration analysis. In this study, cyclic wet and dry conditions to reproduce the structure of the environment in accelerated corrosion and chloride penetration test analysis was performed. Corrosion was determined by the result of reinforcement corrosion monitoring based on galvanic potential measurement and half-cell potential method. Accelerated corrosion test results for each formulation was different corrosion periods, the order OPC> FA> BS> High-strength concrete. FEM durability interpretation program DuCOM was conducted under the same conditions as in accelerated corrosion test. The experimental RCPT tests demonstrated the validity of the result.

Effects of phosphate coating on some performance of painted Al alloy sheet (도장 알루미늄 합금판의 성능에 미치는 인산염피막의 영향)

  • 이규환;노병호
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.5
    • /
    • pp.289-299
    • /
    • 1995
  • The effects of phosphate coating have been studied on physical properties and corrosion resistance of painted aluminum alloy sheet for automobile body. The physical properties (surface roughness, paint adhesion, impact resistance and pencil hardness) and corrosion resistance(cyclic corrosion and filiform corrosion) were investigated. Phosphate coatings enhanced the physical properties of painted Al alloy sheet, especially paint adhesion after the 240hours water immersion test. Phosphate coating also markedly improved the resistance for cyclic corrosion and filiform corrosion of painted cold rolled steel and Zn-Ni plated steel sheet as well as painted Al alloy sheet. The corrosion resistance of painted Al sheets was varied with the concentration of free fluoride ion and metal additives like Ni and Mn in the phosphating bath. A maximum corrosion resistance was obtained at about 300ppm of fluoride ion and additives of Ni and Mn obviously increased the corrosion resistance of painted specimens.

  • PDF