• Title/Summary/Keyword: cyclic behaviors

Search Result 302, Processing Time 0.032 seconds

A Comparative Study on the Cyclic Behavior and Fatigue Life of Cast and Extruded SiC -Particulate - Reinforced Al-Si Composites (주조 및 압출가공된 SiC입자강화 알루미늄복합재의 피로거동 및 피로수명에 대한 비교 연구)

  • Go, Seung-Gi;Lee, Gyeong-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.777-785
    • /
    • 2000
  • The low-cycle fatigue behaviors of cast AI-Si alloy and composite with reinforcement of SIC particles were compared with those of extruded unreinforced matrix alloy and composite in order to investigate the influence of cast and extrusion processes on the cyclic deformation and fatigue life. Generally, both cast and extruded composites including the unreinforced alloy exhibited cyclic hardening behaviour, with more pronounced strain-hardening for the composites with a higher volume fraction of the SiC particles. However, cast composite under a low applied cyclic strain showing no observable plastic strain exhibited cyclic softening behavior due to the cast porosities. The elastic modulus and yield strength of the cast composite were found to be quite comparable to those of the extruded composite, however, the extrusion process considerably improved the ductility and fracture strength of the composite by effectively eliminating the cast porosities. Low-cycle fatigue lives of the cast alloy and composite were shorter than those of the extruded counterparts. Large difference in life between cast and extruded composites was attributed to the higher influence of the cast porosities on the fatigue life of the composite than that of the unreinforced alloy material. A fatigue damage parameter using strain energy density effectively represented the inferior life in the low-cycle regime and superior life in the high-cycle regime for the composite, compared to the unreinforced alloy.

Cyclic Deformation Behaviors under Isothermal and Thermomechanical Fatigue Conditions in Nb and Mo Added 15Cr Ferritic Stainless Steel (Nb 및 Mo 첨가 페라이트계 스테인리스강의 등온 저주기 및 열기계적 피로에 따른 변형거동)

  • Jung, Jae Gyu;Oh, Seung Taik;Choi, Won Doo;Lee, Doo Hwan;Lim, Jong Dae;Oh, Yong Jun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.707-715
    • /
    • 2009
  • This paper deals with cyclic stress and strain responses during isothermal low cycle fatigue (LCF) and thermo-mechanical fatigue (TMF) loadings on Nb and Mo containing 15Cr stainless steel, which is used for exhaust manifolds in automobiles. The test temperatures ($T_{i}$) of the isothermal LCF were 600 and $800^{\circ}C$. The minimum temperature of the TMF test was $100^{\circ}C$ and the maximum temperaures ($T_{p}$) were varied between 500 and $800^{\circ}C$. In both loading conditions, weak cyclic softening is observed at $T_{i}=T_{p}=800^{\circ}C$, but the transition to strong cyclic hardening is completed with the temperature decrease below $T_i=600{\sim}700^{\circ}C$ for LCF and $T_{p}=500{\sim}600^{\circ}C$ for TMF. The stress-strain hysteresis loops in the TMF loading show a significant stress relaxation during compressive (heating) half cycle at $T_{p}>500^{\circ}C$, which develops tensile mean stress during cycling. Due to the stress relaxation, the TMF test sample reveals much lower dislocation density than the isothermally fatigued sample at the same temperature with $T_{p}$. A detailed correlation between fatigue microstructure and cycling deformation behavior is discussed.

Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites

  • Hou, Dongxu;Wu, Zhimin;Zheng, Jianjun;Cui, Yao
    • Computers and Concrete
    • /
    • v.15 no.1
    • /
    • pp.1-20
    • /
    • 2015
  • Many existing reinforced concrete (RC) columns in structures tend to become substandard RC ones due to updated standards or environmental changes. These substandard columns may alter the behaviors of the whole structure and therefore are in urgent need of seismic retrofitting. Owing to their superior advantages, carbon fiber reinforced polymer (CFRP) composites are widely used to retrofit RC columns. The applications mainly focus on various substandard RC columns, but few deals with substandard columns with deteriorated concrete, especially damaged by earthquake. The purpose of this paper is to investigate the seismic behaviors of CFRP reinforced partially deteriorated RC columns and to evaluate the effect of CFRP sheets on them. Six flexure-dominant columns were tested under a constant axial load and transverse cyclic displacements. It is found that the seismic behaviors of partially deteriorated columns can be recovered by wrapping CFRP sheets on them. Numerical analysis is then conducted using finite element methods and verified with experimental results. The effects of the axial load ratio, the ratio of the thickness of CFRP sheet to the column diameter, and the slenderness ratio on the seismic behaviors of CFRP reinforced RC columns are evaluated. Finally, a method is proposed to determine the required thickness of CFRP sheet.

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.

Ultra-low cycle fatigue tests of Class 1 H-shaped steel beams under cyclic pure bending

  • Zhao, Xianzhong;Tian, Yafeng;Jia, Liang-Jiu;Zhang, Tao
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.439-452
    • /
    • 2018
  • This paper presents experimental and numerical study on buckling behaviors and hysteretic performance of Class 1 H-shaped steel beam subjected to cyclic pure bending within the scope of ultra-low cycle fatigue (ULCF). A loading device was designed to achieve the pure bending loading condition and 4 H-shaped specimens with a small width-to-thickness ratio were tested under 4 different loading histories. The emphasis of this work is on the impacts induced by local buckling and subsequent ductile fracture. The experimental and numerical results indicate that the specimen failure is mainly induced by elasto-plastic local buckling, and is closely correlated with the plastic straining history. Compared with monotonic loading, the elasto-plastic local buckling can occur at a much smaller displacement amplitude due to a number of preceding plastic reversals with relative small strain amplitudes, which is mainly correlated with decreasing tangent modulus of the material under cyclic straining. Ductile fracture is found to be a secondary factor leading to deterioration of the load-carrying capacity. In addition, a new ULCF life evaluation method is proposed for the specimens using the concept of energy decomposition, where the cumulative plastic energy is classified into two categories as isotropic hardening and kinematic hardening correlated. A linear correlation between the two energies is found and formulated, which compares well with the experimental results.

Simulations of the hysteretic behavior of thin-wall cold-formed steel members under cyclic uniaxial loading

  • Dong, Jun;Wang, Shiqi;Lu, Xi
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.323-337
    • /
    • 2006
  • In this paper, the hysteretic behaviors of channel and C-section cold-formed steel members (CFSMs) under cyclic axial loading were simulated with the finite element method. Geometric and material nonlinearities, Bauschinger effect, strain hardening and strength improvement at corner zones were taken into account. Extensive numerical results indicated that, as the width-to-thickness ratio increases, local buckling occurs prematurely. As a result, the hysteretic behavior of the CFSMs degrades and their energy dissipation capability decreases. Due to the presence of lips, the hysteretic behavior of a C-section steel member is superior to that of its corresponding channel section. The intermediate stiffeners in a C-section steel member postpone the occurrence of local buckling and change its shapes, which can greatly improve its hysteretic behavior and energy dissipation capability. Therefore, the CFSMs with a large width-to-thickness ratio can be improved by adding lips and intermediate stiffeners, and can be used more extensively in residential buildings located in seismic areas.

Cyclic test for beam-to-column abnormal joints in steel moment-resisting frames

  • Liu, Zu Q.;Xue, Jian Y.;Peng, Xiu N.;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1177-1195
    • /
    • 2015
  • Six specimens are tested to investigate the cyclic behavior of beam-to-column abnormal joints in steel moment-resisting frames, which are designed according to the principle of strong-member and weak-panel zone. Key parameters include the axial compression ratio of column and the section depth ratio of beams. Experimental results indicate that four types of failure patterns occurred during the loading process. The $P-{\Delta}$ hysteretic loops are stable and plentiful, but have different changing tendency at the positive and negative direction in the later of loading process due to mechanical behaviors of specimens. The ultimate strength tends to increase with the decrease of the section depth ratio of beams, but it is not apparent relationship to the axial compression ratio of column, which is less than 0.5. The top panel zone has good deformation capacity and the shear rotation can reach to 0.04 rad. The top panel zone and the bottom panel zone don't work as a whole. Based on the experimental results, the equation for shear strength of the abnormal joint panel zone is established by considering the restriction of the bottom panel zone to the top panel zone, which is suitable for the abnormal joint of H-shaped or box column and beams with different depths.

Static and Fatigue Fracture Assessment of Hybrid Composite Joint for the Tilting Car Body (틸팅차량용 차체의 Hybrid 복합재 접합체결부의 정적 및 피로 파괴 평가)

  • Jung, Dal-Woo;Kim, Jung-Seok;Seo, Sueng-Il;Jo, Se-Hyun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.166-173
    • /
    • 2007
  • Fatigue fracture behavior of a hybrid bolted joint was evaluated in comparison to the case of static fracture. Two kinds of specimens were fabricated for the mechanical tests; a hybrid bolted joint specimen for the shear test and a hybrid joint part specimen applied in the real tilting car body for the bending test. Characteristic fracture behaviors of those specimens under cyclic toads were obviously different from the case under static loads. For the hybrid bolted joint specimen, static shear loading caused the fracture of the bolt body itself in a pure shear mode, whereas cyclic shear loading brought about the fracture at the site of local tensile stress concentration. For the hybrid joint part specimen, static bend loading caused the shear deformation and fracture in the honeycomb core region, while cyclic bend loading did the delamination along the interface between composite skin and honeycomb core layers as well as the fracture of welded joint part. Experimental results obtained by static and fatigue tests were reflected in modifications of design parameters of the hybrid joint structure in the real tilting car body.

Malware Detection with Directed Cyclic Graph and Weight Merging

  • Li, Shanxi;Zhou, Qingguo;Wei, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3258-3273
    • /
    • 2021
  • Malware is a severe threat to the computing system and there's a long history of the battle between malware detection and anti-detection. Most traditional detection methods are based on static analysis with signature matching and dynamic analysis methods that are focused on sensitive behaviors. However, the usual detections have only limited effect when meeting the development of malware, so that the manual update for feature sets is essential. Besides, most of these methods match target samples with the usual feature database, which ignored the characteristics of the sample itself. In this paper, we propose a new malware detection method that could combine the features of a single sample and the general features of malware. Firstly, a structure of Directed Cyclic Graph (DCG) is adopted to extract features from samples. Then the sensitivity of each API call is computed with Markov Chain. Afterward, the graph is merged with the chain to get the final features. Finally, the detectors based on machine learning or deep learning are devised for identification. To evaluate the effect and robustness of our approach, several experiments were adopted. The results showed that the proposed method had a good performance in most tests, and the approach also had stability with the development and growth of malware.

Thermal Fatigue Test of an Annular Structure

  • Hwang Jeong-Ki;Suh Chang-Min;Kim Chae-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • A half-scaled large test model for the main components of the real annular structure was built and the thermal behaviors were experimented and obtained by thermal cyclic loads. The model design and the test conditions for the thermal loads were determined to take into consideration the thermal and mechanical loads acting on the real annular structure by finite element analyses. Temperature profiles and strains of the main components of the model were measured at an early stage of the test and periodically throughout the test in the given test conditions. After completion of the thermal cyclic tests, no evidence of crack initiation and propagation were identified by a dye penetration test. The measured strains at the critical parts were slightly increased proportionally with the increase in the number of the thermal cycles.