• Title/Summary/Keyword: cyclic AMP

Search Result 320, Processing Time 0.031 seconds

Modulation of Large Conductance $Ca^{2+}-activated$ $K^+4$ Channel of Skin Fibroblast (CRL-1474) by Cyclic Nucleotides

  • Yun, Ji-Hyun;Kim, Seung-Tae;Bang, Hyo-Weon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.131-135
    • /
    • 2005
  • Potassium channels in human skin fibroblast have been studied as a possible site of Alzheimer disease pathogenesis. Fibroblasts in Alzheimer disease show alterations in signal transduction pathway such as changes in $Ca^{2+}$ homeostasis and/or $Ca^{2+}-activated$ kinases, phosphatidylinositol cascade, protein kinase C activity, cAMP levels and absence of specific $K^+$ channel. However, little is known so far about electrophysiological and pharmacological characteristics of large-conductance $Ca^{2+}$-activated $K^+$ ($BK_{Ca}$) channel in human fibroblast (CRL-1474). In the present study, we found Iberiotoxin- and TEA-sensitive outward rectifying oscillatory current with whole-cell recordings. Single channel analysis showed large conductance $K^{+}$ channels (106 pS of chord conductance at +40 mV in physiological $K^+$ gradient). The 106 pS channels were activated by membrane potential and $[Ca^{2+}]_i$, consistent with the known properties of $BK_{Ca}$ channels. $BK_{Ca}$ channels in CRL-1474 were positively regulated by adenylate cyclase activator ($10{\mu}M$ forskolin), 8-Br-cyclic AMP ($300{\mu}M$) or 8-Br-cyclic GMP ($300{\mu}M$). These results suggest that human skin fibroblasts (CR-1474) have typical $BK_{Ca}$ channel and this channel could be modulated by c-AMP and c-GMP. The electrophysiological characteristics of fibroblasts might be used as the diagnostic clues for Alzheimer disease.

Vasorelaxant properties of cyclic nucleotide phosphodiesterase inhibitors in rat aorta (흰쥐 대동맥에서 cyclic nucleotide phosphodiesterase 억제제들의 혈관 이완 특성)

  • Kang, Hyung-sub;Choi, Cheol-ho;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.615-624
    • /
    • 2003
  • Vascular smooth muscle relaxation is modulated by an increase in cGMP subsequent to nitric oxide (NO) production by endothelial cells. The effects of cAMP and cGMP phosphodiesterase (PDE) inhibitors were investigated in phenylephrine-precontracted rat aorta rings by using the specific inhibitors of PDE I, III, IV and V as relaxing agents (calmodulin-activated PDE inhibitors, IBMX and $W_7$, type I; cAMP-specific PDE inhibitors, milrinone, type IV; Ro 20-1724, type III and cGMP-specific PDE inhibitor, zaprinast, type V). All the PDE inhibitors produced a concentration-dependent relaxation in the ring with intact endothelium (+E). Except for milrinone, all the PDE inhibitors-induced relaxations were inhibited by removal of extracellular $Ca^{2+}$, $N^G$-nitro-L-arginine, $N^G$-nitro-L-arginine methyl ester, methylene blue (MS) or nifedipine. The specific PDE I and PDE IV inhibitors both produced endothelium-independent relaxations which were inhibited by MS in -E rings. However, zaprinast had no effect in -E rings. Except for milrinone, sodium nitroprusside (a NO donor)-induced relaxation was significantly augmented by all PDE inhibitors in +E rings. The results suggest that I) the vasorelaxant properties of IBMX, $W_7$, Ro 20-1724 and zaprinast are dependent on endothelium or on interaction with $Ca^{2+}$ regulation, 2) each PDE is differently distributed in vascular tissues (endothelial and smooth muscle cells), 3) the vasodilations of PDE inhibitors are due to the increase of cAMP and cGMP formation through inhibition of cAMP- and cGMP-PDE and 4) the vasodilation action of milrinone does not involve in endothelial-cyclic nucleotide system.

Role of cAMP, EGF, IGF-I and Protein Phosphorylation in Mammary Development II. Interaction Effects of EGF, IGF-I and Photoreactive Cyclic AMP on DNA Synthesis and Protein Phosphorylation (유선발달에 있어서 cAMP, EGF, IGF-I 및 단백질 인산화 작용의 역할 II. EGF, IGF-I 및 Photoreactive Cyclic AMP의 상호작용과 단백질 인산화 작용)

  • 여인서
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.2
    • /
    • pp.95-104
    • /
    • 1995
  • Mouse mammary epithelial cells(NMuMG) were maintained onto 6-well plates (3$\times$105 cells/well) or chambered slide (1$\times$104 cells/well), in DMEM supplemented with 10% fetal calf serum. After serum starvation for 24 hours, DMNB (1$\mu$M) was added and exposed to UV light (300nm, 3 second pulse) after 2 hours from DMNB addition in order to activate DMNB which induces a rapid transient increase in intracellular cAMP upon UV irradiation. EGF (100ng/ml) and/or IGF-I (10ng/ml) were treated at the time of UV irradiation. Nuclear labeling index was estimated as percent of nuclear labeled cells(percent of S phase of cells) by incorporation of 3H-thymidine into DNA(1 hour pulse with 1$\mu$Ci/ml). DMNB(1$\mu$M), EGF (100ng/ml) and/or IGF-I (10ng/ml) signifciantly increased nuclear labeling index than those of control (P<0.05). Addition of DMNB+EGF or DMNB+EGF+IGF-I showed the interaction effect in nuclear labeling index (P<0.05). Protein kinase A activities by addition of EGF, IGF-I or EGF+IGF-I were 10.5, 9.8 or 9.4 unit/mg protein, respectively, and no statistical difference was found in comparison with control (P>0.05). Additon of DMNB+EGF showed the moderate interaction effect on tyrosyl kinase activity (P<0.1). In the fluorography analysis, there were no specific protein phosphorylation patterns were found at 1 or 15 minute by addition of DMNB. EGF and/or IGF-I. These results suggest that the interaction effect in nuclear labeling index by addition DMNB and EGF could be mediated through the modulation of tyrosyl kinase activity by cAMP.

  • PDF

Saikosaponin Contents and cAMP Phosphodiesterase Inhibitory Activities in Bupleuri Radix Extracts According to Extraction Conditions (추출조건에 따른 시호건근 추출액 중의 Saikosaponin함량 및 cAMP Phosphodiesterase 저해활성)

  • 김남수;박인선;강은미;박영현
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.2
    • /
    • pp.329-334
    • /
    • 2000
  • Two major oleananesaponins in Bupleuri radix, saikosaponin $\alpha$ and d, were extracted at various solvent compositions and leaching temperatures. Solvent composition was varied at 0 to 100%(v/v) of ethanol-water and methanol-water, whereas leaching temperature was adjusted to te range of 25~45$^{\circ}C$. The most effective extractant and leaching temperature were 70% ethanol and 45$^{\circ}C$, respectively. However, no major differences in saikosaponin content and cAMP phosphodiesterase inhibition were found at various leaching times. The cAMP phosphodiesterase inhibitions were alo the highest when 70% ethanol was used as the extractant.

  • PDF

Epac: new emerging cAMP-binding protein

  • Lee, Kyungmin
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.149-156
    • /
    • 2021
  • The well-known second messenger cyclic adenosine monophosphate (cAMP) regulates the morphology and physiology of neurons and thus higher cognitive brain functions. The discovery of exchange protein activated by cAMP (Epac) as a guanine nucleotide exchange factor for Rap GTPases has shed light on protein kinase A (PKA)-independent functions of cAMP signaling in neural tissues. Studies of cAMP-Epac-mediated signaling in neurons under normal and disease conditions also revealed its diverse contributions to neurodevelopment, synaptic remodeling, and neurotransmitter release, as well as learning, memory, and emotion. In this mini-review, the various roles of Epac isoforms, including Epac1 and Epac2, highly expressed in neural tissues are summarized, and controversies or issues are highlighted that need to be resolved to uncover the critical functions of Epac in neural tissues and the potential for a new therapeutic target of mental disorders.

Anti-Thrombotic Effects of Egg Yolk Lipids In Vivo

  • Cho, Hyun-Jeong;Ju, Young-Cheol;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.16 no.4
    • /
    • pp.377-380
    • /
    • 2010
  • In this study, we investigated the effect of egg yolk lipids (EYL) on collagen ($10\;{\mu}g/ml$)-stimulated platelet aggregation in vivo. Dietary EYL significantly inhibited collagen-induced platelet aggregation, in addition, increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), intracellular $Ca^{2+}$-antagonist as aggregation-inhibiting molecules, in collagen-stimulated platelets. These results suggest that EYL inhibits the collagen-induced platelet aggregation by up-regulating the cAMP and cGMP production. On the other hands, prothrombin time (PT) on extrinsic pathway of blood coagulation was potently prolonged by dietary EYL in vivo. These findings suggest that EYL prolongs the internal time between the conversion of fibrinogen to fibrin. Accordingly, our data demonstrate that EYL may be a crucial tool for a negative regulator during platelet activation and blood coagulation on thrombotic diseases.

Inhibitory effects of isoscopoletin on thrombus formation via regulation of cyclic nucleotides in collagen-induced platelets

  • Lee, Dong-Ha
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.235-241
    • /
    • 2020
  • An essential component of the hemostatic process during vascular damage is platelet activation. However, many cardiovascular diseases, such as atherosclerosis, thrombosis, and myocardial infarction, can develop due to excessive platelet activation. Isoscopoletin, found primarily in plant roots of the genus Artemisia or Scopolia, has been studied to demonstrate potential pharmacological effects on Alzheimer's disease and anticancer, but its mechanisms and role in relation to thrombus formation and platelet aggregation have not yet been discovered. This research investigated the effect of isoscopoletin on collagen-induced human platelet activation. As a result, isoscopoletin strongly increased cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels in a concentration-dependent manner. In addition, isoscopoletin greatly phosphorylated inositol 1,4,5-triphosphate receptor (IP3R) and vasodilator-stimulated phosphoprotein (VASP), known substrates of cAMP-dependent kinase and cGMP dependent kinase. Phosphorylation of IP3R by isoscopoletin induced Ca2+ inhibition from the dense tubular system Ca2+ channels, and VASP phosphorylation was involved in fibrinogen binding inhibition by inactivating αIIb/β3 in the platelet membrane. Isoscopoletin finally reduced thrombin-induced fibrin clot production and finally reduced thrombus formation. Therefore, this research suggests that isoscopoletin has strong antiplatelet effects and is likely to be helpful for thrombotic diseases involving platelets by acting as a prophylactic and therapeutic agent.

Regulatory Action of $\beta-adrenergic$ Agonist and 8-bromocyclic AMP on Calcium Currents in the Unfertilized Mouse Eggs

  • Haan, Jae-Hee;Cheong, Seung-Jin;Kim, Yang-Mi;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.175-183
    • /
    • 1993
  • There are many report suggesting that influx and intracellular calcium concentration $([Ca^{2+}]_i)$ are related to cell signalling in various cells. However, it has not been reported that calcium channel activation is affected by the substances involved in signal transduction pathways in the mouse eggs. In this study, the effects of isoprenaline (ISP) and cyclic AMP on calcium influx through calcium channels were investigated to show their relationship with the signal transduction process in unfertilized mouse eggs. Using whole cell voltage clamp techniques, calcium currents, elicited by the depolarizing pulses of 300 ms duration (from -50 mV to 50 mV in 10 mV increments) from a holding potential of -80 mV, were recorded. The current-voltage (I-V) relation of calcium currents was shown to be bell-shaped; the current began to activate at -50 mV and reached its maximum $(-1.33{\pm}0.16\;nA:\;mean{\pm}S.E.,\;n=7)$ at -10 mV, then decayed at around 50 mV. Calcium currents were fully activated within $7\;ms{\sim}20\;ms$ and completely inactivated 200 ms after onset of the step pulse. ISP within the concentration ranges of $10^{-8}\;M{\sim}10^{-4}\;M$ dose-dependently increased the amplitude calcium current. The permeable cyclic AMP analogue,8-bromocyclic AMP, also increased its maximal amplitude by 46ft at $10^{-5}\;M$, while protein kinase inhibitor (PKI), which is known to inhibit 0.02 phosphorylating units of cyclic AMP-dependent protein kinase (PKA) per microgram decreased calcium currents. Currents recorded in the presence of PKI were resistant to increase by the application of $10^{-5}\;M$. Also, PKI inhibited the calcium current increase elicited by ISP treatment. These results suggest that $\beta-adrenergic$ regulation of the calcium channel is mediated by the cAMP-dependent protein kinase. This signal transduction pathway might play a role in regulating $[Ca^{2+}]_i$, level due to the increase of calcium influx in mouse eggs.

  • PDF

The Effect of Addition of Cyclic Adenosine Monophosphate and Nitric Oxide in Low Potassium Dextran Solution for Lung Preservation in an Isolated Rabbit Lung Perfusion Model. (토끼 폐장 분리관류 모형에서 Low Potassium Dextran 용액에 Cyclic Adenosine Monophosphate와 Nitric Oxide의 첨가가 폐보존에 미치는 영향)

  • 조덕곤;조규도;김영두;곽문섭
    • Journal of Chest Surgery
    • /
    • v.34 no.3
    • /
    • pp.212-223
    • /
    • 2001
  • 배경: 이식폐의 보존 및 재관류 동안 cyclic adenosine monophosphate(cAMP)와 nitric oxide(NO)는 폐혈관 내 순환조절을 유지하는데 있어 중심적인 역할을 한다. 그러나 내치세포내의 cAMP와 NO 모두 허혈-재관류 과정 동안에 현저하게 감소한다. 이에 저자는 low potassium dextran(LPD) 폐조본액에 cAMP의 유사체인 dibutyry1 cAMP(db-cAMP)와 NO의 공여물질인 nitroglycerin(NTG)을 첨가하여 이들의 폐보존 효과를 알아보고, 이들은 첨가한 폐보존액 들의 효과를 비교하였다. 대상 및 방법: 토끼 폐장 분리관류 모형에 실험군은 각각 6마리씩 4개군으로 단순 LPD 페보존액만 사용한 경우(I군), LPD 용액에 NTG 만 참가한 경우(II군), cAMP 만 첨가한 겨우(III군) 그리고 두가지 모두를 첨가한 경우는 IV군으로 분류하였으며, 폐보존액이 주입된 심폐블록은 영상 1$0^{\circ}C$에서 24시간 동안 보관한 다음 100% 산소농도에서 기계호흡을 하면서 신선 정맥혈로 30분 동안 재관류를 시행하였다. 재관류폐의 평가를 위해 폐기능 및 폐부종 정도를 정량 측정하였으며, 유출로 혈액으로부터 tumor necrosis factor $\alpha$(TNF-$\alpha$)와 간접적인 NO의 총량을 알기 위해 nitrite/nitrate의 양을 측정하였다. 또한 재관류가 끝난 후 광학 및 전자현미경학적 소견을 관찰하였다. 결과: 모든 실험군 중 제 IV군 의 폐보존 능력이 가장 우수하였으나, 제 II, III, IV군 사이는 통RP적으로 유의한 차이가 없었다. 제 I군은 제 II, III, IV군들에 비해 유의하게 폐기능이 가장 나쁘고 폐부종 정도가 가장 심했다(p<0.05). 제 II군은 제 III군에 비해 더 좋은 폐기능을 보였고, 폐부종 정도가 덜 하였으나 통계적은 유의성은 없었다. TNF-$\alpha$ 는 제 IV 군이 Irns에 비해 유의하게 분비량이 적었다. (p<0.05). 총 NO의 양은 제 II군과 IV 군이 제 I 군과 III군보다 유의하게 높았으나(p<0.001), 제 II군과 IV군, 제 I군과 III군 사이 비교에서 유의한 차이는 없었다. 또한 제 I 군과 III군에서는 시간이 지남에 따라 유의하게 NO의 양이 점차 감소하였다. (p<0.05). 광학 및 전자현민경 소견상 폐포 및 폐혈관 구조가 제 II, III, IV 군이 I 군에 비해 더 잘 보존되어있었다. 결론: LPD 폐보존액에 db-cAMP 및 NTG의 첨가는 폐보존 효과가 모두 우수함을 확인하였고 이들의 폐보존 효과 차이는 거의 없음을 알수 있었다. 그렇지만 이들의 병합사용이 폐혈관 항상성을 더 잘 유지시킬 수 있고 허혈-재관류 손상을 줄여 폐보존 효과를 높일 수 있을 것이라고 기대된다.

  • PDF