• Title/Summary/Keyword: cutting velocity

Search Result 177, Processing Time 0.018 seconds

Arc efficiency and kerf width in plasma arc cutting process (플라즈마 절단공정에서의 아아크 효율과 절단폭)

  • 노태정;나석주
    • Journal of Welding and Joining
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 1987
  • Plasma arc cutting is a fusion cutting process in which a gas constricted arc is employed to produce high temperature, high velocity jet at the workpiece. Even though the plasma arc cutting has been wid¬ely used in the industry, very little work has been done on the analysis of the process. In this paper, the kerf width was numerically analyzed by soving the temperature distribution in base metal under consideration of the latent heat effect. In modelling the heat flow problem, the heat intensity of the plasma arc was assumed to have a Gaussion distribution in the transverse direction and expone¬ntially decreasing in the thickness direction. The thermal efficiency and the heat input ratio of the top surface were experimentally deterimned for various thickness and cutting conditions, and used in numerical calculation of the kerf width. The experimental results were in eonsiderabely good agreement with the theoretically predicted kerf width.

  • PDF

Effect of Lubricant Addition in Terms of Volume Fraction on Fabrication of Cu/Sn Bonded Diamond Micro Blades (다이아몬드 마이크로 블레이드 제조에 있어 부피비의 관점에서 본 윤활제 첨가 효과)

  • Moon, Jong-Chul;Kim, Song-Hee
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.1
    • /
    • pp.41-45
    • /
    • 2010
  • The effect of $MoS_2$ and graphite content on wear resistance and mechanical properties of Cu/Sn bonded diamond micro blades was comparatively investigated in terms of volume and weight fraction. For the evaluation of endurance and cutting performance, instantaneous electric power consumption and cumulative wear loss during cutting glass work piece at constant velocity were measured with the micro blades of the wide range of lubricant content. The energy consumption of blades for glass cutting decreased with the content of lubricants. Wear amount of blade in volume increased with the amount of lubricant addition. It was found to be relevant to the decrease in flexural strength and hardness with the amount of lubricants. With the same amount of lubricant content in volume fraction $MoS_2$ showed superiority in mechanical properties and cutting performance than graphite while graphite could result in stronger effect on lowering electric consumption during cutting work piece for the same weight percent fraction than $MoS_2$ because of lower density.

Fundamental Study on Rock Cutting by an Actuated Undercutting Disc (구동형 언더커팅 디스크에 의한 암석절삭에 관한 기초연구)

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.591-602
    • /
    • 2020
  • Several alternative rock-cutting concepts, which are modified from the conventional ones, have been developed lately. Of the concepts, undercutting is one of the latest technologies. In this study, as a fundamental study on the undercutting technique, the rock-cutting mechanism and important parameters of the undercutting were introduced. This study built up cutting test system for evaluating the cutting performance of an actuated undercutting disc cutter (ADC), and carried out a series of cutting tests under different cutting parameters of ADC. The characteristics of cutter forces obtained from ADC rock-cutting tests were analyzed. The both average and peak values of the three directional cutter forces were linearly increased with the increases of linear velocity, penetration depth in vertical direction and eccentricity of ADC.

Study on the Lapping Characteristics of Sapphire Wafer by using a Fixed Abrasive Plate (고정 입자 정반을 이용한 사파이어 기판의 연마 특성 연구)

  • Lee, Taekyung;Lee, Sangjik;Jo, Wonseok;Jeong, Haedo;Kim, Hyoungjae
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • Diamond mechanical polishing (DMP) is a crucial process in a sapphire wafering process to improve flatness and achieve the target thickness by using free abrasives. In a DMP process, material removal rate (MRR) is a key factor to reduce process time and cost. Controlling mechanical parameters, such as velocity and pressure, can increase the MRR in a DMP process. However, there are limitations of using high velocities and pressures for achieving a high MRR owing to their side effects. In this paper, we present the lapping characteristics and improvement of MRR by using a fixed abrasive plate through an experimental study. The change in MRR as a function of velocity and pressure follows Preston's equation. The surface roughness of a wafer decreases as the plate velocity and pressure increases. We observe a sharp decrease in MRR over the lapping time at a high velocity and pressure in the velocity and pressure test. An analysis of surface roughness (Rq and Rpk) indicates that wear of abrasives decreases the MRR sharply. In order to investigate the effect of abrasive wear on the MRR, we utilize a cutting fluid and a rough wafer. The cutting fluid delays the wear of abrasives resulting in improvement of MRR drop. The rough wafer maintains the MRR at a stable rate by self-dressing.

A Study on the Simulation Analysis of Nozzle Length and Inner Spiral Structure of a Waterjet (워터젯 노즐의 길이와 내부 나선 구조 유무에 따른 유체거동에 관한 전산해석)

  • Gwak, Cheong-Yeol;Shin, Bo-Sung;Go, Jeung-Sang;Kim, Moon-Jeong;Yoo, Chan-Ju;Yun, Dan-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.118-123
    • /
    • 2017
  • It is well known that water jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics, and composite materials because of some advantages, such as heatless and non-contacting cutting different from the laser beam machining. In this paper, we proposed the simulation model of waterjet by lengths and the inner spiral structure of the nozzle. The simulation results show that the outlet velocity of the nozzle is faster than the inlet. Furthermore, we found rapid velocity reduction after passing through the outlet. The nozzle of diameter ${\phi}500$ and length 70mm, shows the optimal fluid width and velocity distribution. Also, the nozzle with inner spiral structure shows a Gaussian distribution of velocity and this model is almost twice as fast as the model without spiral structure, within the effective standoff distance (2.5 mm). In the future, when inserting abrasive material into the waterjet, we plan to analyze the fluid flow and the particle behavior through a simulation model.

Approximate Solution for Constant Velocity of Archimedean Spiral for Abrasion Testing of Rock Cutting Tools (암석공구 마모시험을 위한 아르키메데스 나선의 등속도 운동 근사해 조사)

  • Kang, Hoon;Kim, Dae-ji;Song, Changheon;Oh, Joo-Young;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.181-192
    • /
    • 2020
  • Pin-on-disk test is a suggested abrasion testing method by ASTM (American Society for Testing and Materials). This briefly illustrated the Archimedean spiral motion of a pin type specimen on a disk. To apply this method to rock cutting tools, a constant linear velocity (CLV) is precisely maintained during the test. We defined the two velocity vectors (RPM and horizontal speed) which connected to the resultatnt velocity. We derived a differential equations for the two parameters under CLV condition. It was difficult to find a exact solution. Previous literatures had been reviewed, and an approximate solution was investigated. We mathematically simulated the result for a certain parameter, and examine the accuracy of the solution.

Chip Breaking Characteristics Depending on Equivalent Effective Rake Angle in Turning (외경선삭가공시 등가유효경사각에 따른 칩절단 특성)

  • Lee, Young-Moon;Chang, Seung-Il;Sun, Jeong-Woo;Yun, Jong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.2
    • /
    • pp.25-31
    • /
    • 2004
  • Machinability in metal cutting processes depends on cutting input conditions such as cutting velocity, feed rate, depth of cut, types of work material and tool shape factors. In this study, to assess chip breaking characteristics of a turning process, an equivalent oblique cutting system to this has been established. And the equivalent effective rake angle was determined using side rake angle, back rake angle and side cutting edge angle of the tool. A non-dimensional parameter, Chip breaking index(CB), was used to assess Chip breaking characteristics of chip in conjunction with the equivalent effective rake angle. In case of positive rake angles of the equivalent effective rake, the back rake angle has little effect on the chip breaking characteristics however, in case of negative ones, the side rake angle has some effect on Chip breaking characteristics.

  • PDF

A Study on the Chip Control in Machining STS304 Using a Chip Breaker (STS304잘삭시 Chip Breaker를 이용한 Chip제어에 관한 연구)

  • Yeom, D.W.;Yu, K.H.;Seo, N.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.42-49
    • /
    • 1994
  • One of the parameters that influence the productivity of every industry, involved in metal cutting, is the chip from ; continuous or broken chip. Chip form varies according to machining conditions, material used, tool geometry and chip breaker geometry. Therefore, in this study we carried out the experiment on the chip control in machining STS304 using an attached obstruction type chip breaker. Namely, with the change of a chip breaker distance, chip breaker angle, cutting characteristics in machining STS304 which is well-known as a machining difficult material and produces a saw-toothed chip. The results of the experiment are as follows : 1. The chip breaker distance and angle under which the preferred chip is produced, show 1.5mm and 60 .deg. , while chip breaker angle in machining an ordinary steel was well-known 45 .deg. . 2. During the cutting process, the change of feed than the change of velocity was applied as cutting conditions, effects more clearly on the chip breaking. 3. Considering a whole surface roughness, it is not advisable to apply chip breaker mentioned above for precision cutting.

  • PDF

A Study on the Flow Velocity of Micro Channels Depending on Surface Roughness (표면 거칠기에 따른 마이크로 채널의 유속에 관한 연구)

  • Park, Hyun-Ki;Kim, Jong-Min;Hong, Min-Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 2008
  • Micro machining can manufacture complex shapes with high accuracy. Especially, this enables wide application of micro technology in various fields. For example, micro channels allow fluid transfer, which is a widely used technology. Therefore, liquidity research of flow in micro channels and micro channel manufacturing with use of various materials and cutting conditions has very important meaning. In this study, to find out correlation between fluid velocity in micro channels and surface roughness, we manufactured micro channels using micro end-mill and dropped ethanol into micro channels. We compared several surface roughness and fluid velocity in micro channels that were created by various processing conditions. Finally, we found out relationship between fluid velocity and surface roughness in micro channels of different materials.

Studies on Development of a Chicken Feet-bone Remover (II) - Manufacture of Chicken Feet-bone Remover - (닭발 뼈 제거장치 개발에 관한 연구(2) - 뼈 제거장치 제작 및 성능시험 -)

  • Lee, Jeong-Taeg;Kim, Tae-Han
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.257-266
    • /
    • 2011
  • Consumption of chicken feet has been increasing recently, thus it was necessary to produce good quality of bone less chicken feet. In the process of bone removal during chicken feet production, feeding, conveying, cutting and bone removing process takes about 90% of overall labor. Therefore, the development of a chicken feet-bone remover was necessary to reduce the cost of labor. The main objective of this study was to make and test of chicken feet-bone remover. The optimum vibration level of feeder wes 8, and the optimum conveyor speed was 3.6 m/min. The feeding speed of feeder were 0.18 m/s, 0.13 m/s and 0.19 m/s for the weight ranges of chicken feet of >20 g, 20~30 g and 30 g< respectively. The sensing success rates of chicken feet were 100%, 98% and 96% for the conveyor speeds of 3.0, 3.6 and 4.2 m/min respectively. The slips of chicken feet were 1.0 mm, 1.9 mm and 3.2 mm for conveyor speed of 0.8, 1.9 and 4.2 m/min respectively, with the average moisture content of 65% (w.b). The incision accuracy rates of the chicken leg were 46%, 95%, 97% for the size ranges of >15 mm, 15~18 mm, 18 mm< respectively with the velocity of cutting blade 3.9 m/s. The removal rates of the chicken feet bone were 98%, 96%, 88% for toes diameter >10 mm, 10~15 mm, 15 mm> respectively with the velocity of cutting blade 11.8 m/s.