DOI QR코드

DOI QR Code

Approximate Solution for Constant Velocity of Archimedean Spiral for Abrasion Testing of Rock Cutting Tools

암석공구 마모시험을 위한 아르키메데스 나선의 등속도 운동 근사해 조사

  • Received : 2020.04.27
  • Accepted : 2020.05.12
  • Published : 2020.06.30

Abstract

Pin-on-disk test is a suggested abrasion testing method by ASTM (American Society for Testing and Materials). This briefly illustrated the Archimedean spiral motion of a pin type specimen on a disk. To apply this method to rock cutting tools, a constant linear velocity (CLV) is precisely maintained during the test. We defined the two velocity vectors (RPM and horizontal speed) which connected to the resultatnt velocity. We derived a differential equations for the two parameters under CLV condition. It was difficult to find a exact solution. Previous literatures had been reviewed, and an approximate solution was investigated. We mathematically simulated the result for a certain parameter, and examine the accuracy of the solution.

Pin-on-disk 시험방법은 ASTM에서 제안한 마모시험방법 중 하나이다. 이 시험법에서는 Pin-on-disk 시험에서 나타나는 핀의 나선운동을 간략히 설명하고 있다. 이 방법을 암석공구의 마모성능을 평가하는데 적용하기 위해서는 핀의 등속도 운동을 수학적으로 구현하여야 한다. 먼저 합산속도에 관여하는 2가지 속도성분(핀의 선형이동속도, 디스크의 회전운동)을 정의하였다. 각각의 성분에 대해 아르키메데스 나선방정식의 등속도 조건을 만족하는 미분방정식을 전개하여 수학 해를 도출하여, 풀이의 난해함을 설명하였다. 이를 해결하기 위한 기존 문헌의 근사해를 조사하고, 정확도와 한계점을 분석하였다.

Keywords

References

  1. Alber, M., Yarali, O., Dahl, F., Bruland, A., Kaling, H., Michalakopoulos, T. N., Cardu M., Hagan, P., Aydin, H., and Ozarslan, A. 2013. ISRM suggested method for determining the abrasivity of rock by the CERCHAR abrasivity test. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014. 101-106.
  2. ASTM Standard G-99, 2016, Standard Test method for Wear Tesing with a Pin-on-Disk Apparatus.
  3. ASTM Standard G132, 2010, Standard test method for laboratory determination of abrasiveness of rock using the Cerchar method.
  4. Farrokh, E. and Kim, D. Y. 2018. A discussion on hard rock TBM cutter wear and cutterhead intervention interval length evaluation. Tunnelling and Underground Space Technology, 81, 336-357. https://doi.org/10.1016/j.tust.2018.07.017
  5. Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A., and Tavakoli, H. R. 2010. TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel. Rock Mechanics and Rock Engineering, 43(4), 427-445. https://doi.org/10.1007/s00603-009-0060-2
  6. Mahmood, I. A. and Moheimani, S. R. 2010. Spiral-scan atomic force microscopy: A constant linear velocity approach. In 10th IEEE International Conference on Nanotechnology, IEEE, 115-120.
  7. Nilsen, B., Dahl, F., Holzhauser, J., and Raleigh, P. 2006. Abrasivity testing for rock and soils. T & T international, 47-49.
  8. Robbins, R. J. 2000. Mechanization of underground mining: a quick look backward and forward. International Journal of Rock Mechanics and Mining Sciences, 37(1-2), 413-421. https://doi.org/10.1016/S1365-1609(99)00116-1
  9. Sang, X., Lupini, A. R., Unocic, R. R., Chi, M., Borisevich, A. Y., Kalinin, S. V., Endeve, E., Archibald, R. K., and Jesse, S. 2017. Dynamic scan control in STEM: Spiral scans. Advanced Structural and Chemical Imaging, 2:6, pp. 1-8.
  10. Thuro, K., Singer, J., Kasling, H., and Bauer, M. 2007. Determining abrasivity with the LCPC test. In 1st Canada-US Rock Mechanics Symposium. American Rock Mechanics Association.
  11. Ziegler, D., Meyer, T. R., Amrein, A., Bertozzi, A. L., and Ashby, P. D. 2016. Ideal scan path for high-speed atomic force microscopy. IEEE/ASME Transactions on Mechatronics, 22(1), 381-391. https://doi.org/10.1109/TMECH.2016.2615327