• Title/Summary/Keyword: cutting tools

Search Result 642, Processing Time 0.029 seconds

A Study on the Machining Accuracy Evaluation Method of High Speed Machining (고속가공 시스템의 가공정밀도 평가방법에 관한 연구)

  • 손덕수;유중학;최성주;이우영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.94-99
    • /
    • 2002
  • KS and ISO have proposed several evaluation methods of conventional machine tools. Even though the accuracy of the tools can be evaluated with these methods, there are still no proper evaluation methods of high speed machining. Because it is hard to evaluate characteristics of high speed machining such as decrease of cutting temperature, cutting force, and reduced machining time. Therefore, new evaluation method for high speed machine should be developed. In this paper, several shapes of model have been proposed to evaluate cutting accuracy of high speed machine.

  • PDF

A Study on the Surface Roughness in Ultra-Precision Cutting of Electroless Nickel (무전해 니켈의 초정밀 절삭에 의한 표면거칠기 연구)

  • 권우순;김동현;난바의치
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.538-541
    • /
    • 2003
  • Ultra-precision machining was carried out on a electroless nickel materials using single crystal diamond tools. The effects of the cutting velocity, the tool length, the tool nose radius, the feed rate and depth of cut on the surface roughness were studied. In this paper, the cutting condition for getting nano order smooth surface of electroless nickel have been examined experimentally by the ultra-precision machine and single crystal diamond tools. And also. the surface roughness was measured by the three dimension

  • PDF

A S tudy on the Dynamic Performance Tests of Machine Tools(I) (공작기계 의 동적 성능 시험 및 평가 에 관한 연구 (I))

  • 이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.190-201
    • /
    • 1985
  • Direct cutting tests was carried out to evaluate the dynamic performance of lathes under various cutting conditions. Significant factors influencing the chatter limits were identified through use of analysis of variance. Dynamic performances of two lathes were compared and the merits and drawbacks of the direct cutting test were discussed. Exciting-direct-cutting test method was newly proposed as a more rational method of dynamic performance test. The basic theory and experiments of the test were explained. The results shows that the method can be used as a powerful tool for the evaluation and the improvement of dynamic performance of machine tools.

A Study on th High Speed Machining Evaluation Method through Shape Machining (형상가공을 통한 고속가공 시스템 평가방법에 관한 연구)

  • 손덕수;유중학;최성주;이우영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.992-995
    • /
    • 2001
  • Several evaluation methods of conventional machine tools have been proposed by KS and ISO. Even though the accuracy of the tools can be evaluated with those methods, there are still no proper evaluation method of high sped machining. Because it is hard to evaluate characteristics of high speed machining such as decrease of cutting temperature, cutting force, and reduced machining time. Therefore, new evaluation method for high speed machine should be developed. In this paper, several shape of model have been proposed to evaluate cutting accuracy of high speed machine.

  • PDF

Tool Path Generation for Rough Cutting Using Octree (옥트리를 이용한 황삭 가공경로생성)

  • 김태주;이건우;홍성의
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.53-64
    • /
    • 1994
  • Rouge cutting process takes the major portion of machining operation using NC milling machine. Especially, most of the machining time is spent in this process when molds are machined. Therefore, an efficient algorithm for generating the tool path for rough cutting is suggested in this paper. The first step of the procedure is getting the volume to be machined by applying the Boolean operation on the finished model and the workpiece which have been modeling system. Basic principle of determining machining procedure is that a large tool should be used at the portion of the simple shape while a small tool should be used at the complex portion. This principle is realized by representing the volume to be machined by an octree, which is basically a set of hexahedrons, and matching the proper tools with the given octants. When the tools are matched with the octants, the tool path can be derived at the same time.

A Basic Study on the Evaluation of Flat End-mill Coated TiAlN (TiAlN코팅 평 엔드밀의 성능평가에 관한 기초 연구)

  • 유중학;국정한;김문기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.130-136
    • /
    • 2001
  • The purpose of this study is an evaluation of flat end mills to develop appropriate tools for the high speed machining. First of all, several flat end mills which are produced by different makers are selected to analyze the performances of the tools. Experimental works are also executed to measure cutting farce, tool wear and surface roughness for different cutting conditions. And then the results are compared and analyzed for developing optimal cutting tool in the high speed condition.

  • PDF

Characteristic Evaluation of WC Hard Materials According to Ni Content Variation by a Pulsed Current Activated Sintering Process (펄스전류활성 소결 공정을 이용한 Ni 함량변화에 따른 WC 소재의 특성평가)

  • Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.30 no.12
    • /
    • pp.672-677
    • /
    • 2020
  • Expensive PCBN or ceramic cutting tools are used for the processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have a problem of breaking easily due to their high hardness but low fracture toughness. To solve this problem, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and researches on various tool materials are being conducted. In this study, WC-5, 10, and 15 wt%Ni hard materials for difficult-to-cut cutting materials are densified using horizontal ball milled WC-Ni powders and pulsed current activated sintering method (PCAS method). Each PCASed WC-Ni hard materials are almost completely dense, with a relative density of up to 99.7 ~ 99.9 %, after the simultaneous application of pressure of 60 MPa and electric current for 2 min; process involves almost no change in the grain size. The average grain sizes of WC and Ni for WC-5, 10, and 15 wt%Ni hard materials are about 1.09 ~ 1.29 and 0.31 ~ 0.51 µm, respectively. Vickers hardness and fracture toughness of WC-5, 10, and 15 wt%Ni hard materials are about 1,923 ~ 1,788 kg/mm2 and 13.2 ~ 14.3 MPa.m1/2, respectively. Microstructure and phase analyses of PCASed WC-Ni hard materials are performed.

Prediction of Chip Forms using Neural Network and Experimental Design Method (신경회로망과 실험계획법을 이용한 칩형상 예측)

  • 한성종;최진필;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.64-70
    • /
    • 2003
  • This paper suggests a systematic methodology to predict chip forms using the experimental design technique and the neural network. Significant factors determined with ANOVA analysis are used as input variables of the neural network back-propagation algorithm. It has been shown that cutting conditions and cutting tool shapes have distinct effects on the chip forms, so chip breaking. Cutting tools are represented using the Z-map method, which differs from existing methods using some chip breaker parameters. After training the neural network with selected input variables, chip forms are predicted and compared with original chip forms obtained from experiments under same input conditions, showing that chip forms are same at all conditions. To verify the suggested model, one tool not used in training the model is chosen and input to the model. Under various cutting conditions, predicted chip forms agree well with those obtained from cutting experiments. The suggested method could reduce the cost and time significantly in designing cutting tools as well as replacing the“trial-and-error”design method.

Hard Turning Machinability of V30 Cemented Carbide with PCD, cBN and PcBN Cutting Tool (초경합금재의 하드터닝에서 공구재종에 따른 절삭성)

  • Heo, Sung-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.47-54
    • /
    • 2008
  • Hard turning process can be defined as a single-point machining process carried out on "hard" materials. The process is intended to replace or limit traditional grinding operations that are expensive, environmentally unfriendly, and inflexible. The purpose of this study is to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, tool wear shape and chip formation by the outer cutting of a kind of wear resistant tungsten carbide V30. Hard turning experiments were carried out on this alloy using the PCD (Poly Crystalline Diamond), cBN (cubic Boron Nitride) and PcBN (Polycrystalline cubic Boron Nitride) cutting tools. The PcBN and the usual cBN tools were used to be compare with the PCD tool and the dry turning was carried out. The PcBN is attractive as the tool material which replaces the PCD. The tool wear width and cutting force were measured, and the worn tool and chip were observed. The difference of the tool wear mechanism among the three tool materials was investigated.

A Study on Machining for Bearing Rubber Seal Die by Flank of Formed Insert Type Tool (Insert type 총형공구 여유각 영향에 따른 베어링 Rubber Seal 금형의 가공성 평가)

  • Li-Hai Li
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.42-47
    • /
    • 2004
  • Formed insert type tool satisfy both the surface roughness and geometric accuracy, so that cutting edge of formed tool can duplicate final feature. For experiment the formed tools with various clearance angles are machined. And the tools are evaluated with respect cutting force, flank rear and surface roughness to optimistic condition.

  • PDF