• Title/Summary/Keyword: cutting simulation

Search Result 464, Processing Time 0.034 seconds

Turning Machining Optimization using Software Based on Cutting Force Model (절삭력 모델 기반의 소프트웨어를 이용한 선삭가공최적화)

  • Ahn, Kwang-Woo;Jeon, Eon-Chan;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Increased productivity and cost reduction have emerged as the main goals of the industry due to the development of the machinery industry, and mechanical materials with excellent properties with the development of the machine tool industry are widely used in machine parts or structures. In addition, the cutting process of production plays a pivotal role in the production technology. Studies on cutting have involved a lot of research on the material, the cutting tool, the processing conditions, and numerical analysis. Due to the development of the computer through numerical analysis, cutting conditions, the assessment of cutting performance, and cutting quality could be predicted. This research uses the creation of the material model and AdvantEdge Production module for the NC code analysis. To improve the productivity, this research employs the optimization method to reduce cutting time.

Modeling of Metal Cutting Using Finite Element Method (유한요소법을 이용한 금속절삭의 모델링)

  • 김경우;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1799-1802
    • /
    • 2003
  • The commercial success of a new product is influenced by the time to market. Shorter product leadtimes are of importance in a competitive market. This can be achieved only if the product development process can be realized in a relatively small time period. New cutting inserts are developed by a time consuming trial and error process guided by empirical knowledge of the mechanical cutting process. The effect of previous cutting on chip formation and the surface residual stresses has been studied. The chip formation is not affected much. There is only a minor influence from the residual stress on the surface from tile first cutting on the second pass chip formation. Thus, it is deemed to be sufficient to simulate only the first pass. The influence of the cutting speed and feed on the residual stresses has been computed and verified by the experiments. It is shown that the state of residual stresses in the workpiece increases with the cutting speed. This paper presents experimental results which can be used for evaluating computational models to assure robust solutions. The general finite element code ABAQUS/Standard has been used in the simulations. A quasi-static simulation with adiabatic heating was performed. The path for separating the chip from the workpiece is predetermined. The agreement between measurements and calculation is good considering the simplifications introduced.

  • PDF

A Study of Machining Error Compensation for Tool Deflection in Side-Cutting Processes using Micro End-mill (측면가공에서 마이크로 엔드밀의 공구변형에 의한 절삭가공오차 보상에 관한 연구)

  • Jeon, Du-Seong;Seo, Tae-Il;Yoon, Gil-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.128-134
    • /
    • 2008
  • This paper presents a machining error compensation methodology due to deflection of micro cutting tools in side cutting processes. Generally in order to compensate for tool deflection errors it is necessary to carry out a series of simulations, cutting force prediction, tool deflection estimation and compensation method. These can induce numerous calculations and expensive costs. This study proposes an improved approach which can compensate for machining errors without simulation processes concerning prediction of cutting force and tool deflection. Based on SEM images of test cutting specimens, polynomial relationships between machining errors and corrected tool positions were induced. Taking into account changes of cutting conditions caused by tool position variation, an iterative algorithm was applied in order to determine corrected tool position. Experimental works were carried out to validate the proposed approach. Comparing machining errors of nominal cutting with those of compensated cutting, overall machining errors could be remarkably reduced.

Design Modifications of a Glass Cutting Machine for the Improved Stability (가공정도 향상을 위한 Glass Cutting Machine의 설계 개선)

  • Kwon, In-Hwan;Ro, Seung-Hoon;Park, Yu-Ra;Yi, Il-Hwan;Kil, Sa-Geun;Park, Keun-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.6-14
    • /
    • 2014
  • Touch panels are widely used in the modern display industry as the cover glass of smart mobile phones and tablet PCs. Glass cutting machines are commonly used to cut the panels into their proper sizes. Vibration of these glass cutting machines is assumed to be the main factor leading to the creation of burrs, notches, cracks, scratches and chips on the cut surfaces, eventually causing defects of the cover glass. In this study, the vibrations of a glass cutting machine used for the shearing of cover glass components were analyzed through an experiment and a computer simulation. The structural properties leading to vibration were also analyzed in an effort to determine design alterations which can suppress these vibrations. Moreover, each design alteration was applied to a computer simulation model to determine the effect of different alteration on suppressing vibration. The results show that simple design alterations can substantially suppress vibrations of glass cutting machines.

A Study on the Cell String for High Efficiency and High Power Photovoltaic Modules (고효율 및 고출력 태양광 모듈을 위한 셀 스트링 연구)

  • Park, Ji Su;Hwang, Soo Hyun;Oh, Won Je;Lee, Su Ho;Jeong, Chae Hwan;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.295-299
    • /
    • 2018
  • In this work, we conducted a study on cell strings of high efficiency and high power solar cell modules via simulation. In contrast to the conventional module manufacturing method, the simulation was performed by connecting cutting cells divided into four parts from 6-in size using the electrically conductive adhesive (ECA). The resistance of the ECA added in series connection was extracted using an experimental method. This resistance was found to be $3m{\Omega}$. Based on this simulation, we verified the change in efficiency of the string as a function of the number of cutting cell connections. Consequently, the cutting cell efficiency of the first 20.08% was significantly increased to 20.63% until the fifth connection; however, for further connections, it was confirmed that the efficiency was saturated to 20.8%. Connecting cutting cells using ECA improves the efficiency of the string; therefore, it is expected that it will be possible to fabricate modules with high efficiency and high power.

Study on Temperature Effect of Difficulty-to-Cut Material in Laser Heat Treatment Process (레이저 열원을 이용한 난삭재 열처리 공정의 온도 효과에 관한 연구)

  • Kim, Dong Hong;Jung, Dong Won;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.29-33
    • /
    • 2014
  • Recently, Difficult-to-cut materials are used in many manufacturing industry. But the difficult-to-cut materials are difficult-to-cutting process. So difficult to cut material cutting process was used after heat treatment through preheating for easy cutting process. In this study, Inconel 625 was preheating using laser heat source in computer simulation. Laser heat source temperature applied $1290^{\circ}C$ that suitable preheating temperature for Inconel 625. And temperature effects such as temperature distribution for moving heat source studied apply to similar actual process condition. Simulation results for heat treatment effects through temperature distribution verified.

Simulation of the Chatter Surface on the Turning Operation (선반가공시 채터로 인한 표면 형상의 시뮬레이션에 관한 연구)

  • 홍민성;김종민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.174-179
    • /
    • 2002
  • In metal cutting, Chatter is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. when vibration and chatter occurs, it reduces tool life, results in poor surface roughness and low productivity of the machining process. In this study, the experiments were conducted in CNC lathe without cutting fluid to investigated phenomenon of the chatter, In the experiments, accelerometers were set up at the tail stock and tool holder and the signals were picked up. In order to observe the effect of chatter on the surface roughness profiles, in this paper, surface roughness profiles will be generated under the ideal condition and the occurrence of the chatter based on the surface simulation model.

  • PDF

Development of Automation Program Module for OLP based Industrial Robot Simulation (OLP 기반 산업용 로봇 시뮬레이션을 위한 자동화 프로그램 모듈 개발)

  • Lee, Soo-Jun;Lee, Se-Han;Park, Jong-Keun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2009
  • Interactive Graphic Robotics Integrated Programming(IGRIP) can handle various types of robot models and can exchange graphic or numerical data easily with other CAD software. In a cutting process of shape-steels, however. IGRIP is inconvenient because the users must generate all the tag points manually. In this study we developed an automation program module in order to generate the tag points automatically in IGRIP This program can read and analyze the macro data containing the information for cutting processes of shape-steels and can generate automatically the parts, the devices, the tag points and the Graphic Simulation Language(GSL) program files useful in IGRIP.

An Interactive Method for Multicriteria Simulation Optimization with Integer Variables (이산형 다기준 시뮬레이션 최적화를 위한 대화형 방법)

  • Shin, Wan-S.;Kim, Jae-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.4
    • /
    • pp.633-649
    • /
    • 1996
  • An interactive multicriteria method, which is called the Modified Pairwise Comparison Stochastic Cutting Plane (MPCSCP) method, is proposed for determining the best levels of the integer decision variables needed to optimize a stochastic computer simulation with multiple response functions. MPCSCP combines good features from interactive tradeoff cutting plane methods and response surface methodologies. The proposed method uses a simple pairwise man-machine interaction and searches an integer space uniformly by using the experimental design which evaluates the decision space centering around an integer center point. The characteristics of the proposed method are investigated through an extensive computational study. The parameter configurations examined in the study are (1) variability of the sampling errors, (2) the size of experimental design, (3) the relaxation of cutting planes, and (4) the levels of decision maker's inconsistency.

  • PDF

Assessment of Air Flow Misalignment Effects on Fume Particle Removal in Optical Plastic Film Cutting Process

  • Kim, Kyoungjin;Park, Joong-Youn
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.51-58
    • /
    • 2020
  • Many types of optical plastic films are essential in optoelectronics display unit fabrication and it is important to develop high precision laser cutting methods of optical films with extremely low level of film surface contamination by fume particles. This study investigates the effects of suction and blowing air motions with air flow misalignment in removing fume particles from laser cut line by employing random particle trajectory simulation and probabilistic particle generation model. The computational results show fume particle dispersion behaviors on optical film under suction and blowing air flow conditions. It is found that suction air flow motion is more advantageous to blowing air motion in reducing film surface contamination outside designated target margin from laser cut line. While air flow misalignment adversely affects particle dispersion in blowing air flows, its effects become much more complicated in suction air flows by showing different particle dispersion patterns around laser cut line. It is required to have more careful air flow alignment in fume particle removal under suction air flow conditions.