• Title/Summary/Keyword: cutting properties

Search Result 555, Processing Time 0.026 seconds

Evaluation of Residual Stress for Weldments Using Continuous Indentation Technique (연속압입시험기법을 이용한 용접부 잔류응력 평가)

  • Lee Y. H.;Choi Y.;Kim K. H.;Kwon D.;Lee J. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.541-546
    • /
    • 2005
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive continuous indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

Evaluation of residual stress for weldments using continuous indentation technique (연속압입시험기법을 이용한 용접부 잔류응력 평가)

  • Lee J. S.;Choi Y.;Kim K. H.;Kwon D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.126-129
    • /
    • 2005
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive continuous indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.

  • PDF

3D Weaving Process : Development of Near Net Shape Preforms and Verification of Mechanical Properties

  • Klapper, Vinzenz;Jo, Kwang-Hoon;Byun, Joon-Hyung;Song, Jung-Il;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.96-100
    • /
    • 2021
  • The lightweight industry continuously demands reliable near-net-shape fabrication where the preform just out-of-machine is close to the final shape. In this study, different half-finished preforms are made π-beams. Then the preforms are unfolded to make a 3D shape with integrated structure of fibers, providing easier handling in the further processing of composites. Several 3D textile preforms are made using weaving technique and are examined after resin infusion for mechanical properties such as inter-laminar shear strength, compressive strength and tensile strength. Considering that the time and labor are important parameters in modern production, 3D weaving technique reduces the manufacturing steps and therefore the costs, such as hand-lay up of textile layers, cutting, and converting into preform shape. Hence this 3D weaving technique offers many possibilities for new applications with efficient composite production.

High-Hardness Cemented Carbide With Nickel-Tungsten Alloy Binder (니켈-텅스텐 합금 결합상 적용 고경도 초경합금)

  • Hanjung Kwon
    • Journal of Powder Materials
    • /
    • v.31 no.4
    • /
    • pp.318-323
    • /
    • 2024
  • Cemented carbide for cutting tools, which is composed of carbide as a hard phase and metallic component as a metallic phase, mainly uses cobalt as the metallic phase due to the excellent mechanical properties of cobalt. However, as the demand for machining difficult-to-machine materials such as titanium and carbon fiber-reinforced plastics has recently increased, the development of high-hardness cemented carbide is necessary and the replacement of cobalt metal with a high-hardness alloy is required. In this study, we would like to introduce high-hardness cemented carbide fabricated using nickel-tungsten alloy as the metallic phase. First, nickel-tungsten alloy powder of the composition for formation of intermetallic compound confirmed through thermodynamic calculations was synthesized, and cemented carbide was prepared through the sintering process of tungsten carbide and the synthesized alloy powder. Through evaluating the mechanical properties of high-hardness cemented carbide with the nickel-tungsten alloy binder, the possibility of producing high-hardness cemented carbide by using the alloys with high-hardness was confirmed.

Cooking Properties of Dry Noodles Prepared from HRW-WW and HRW-ASW Wheat Flour Blends (미국밀과 호주밀의 제면성 비교)

  • Shin, Sung-Young;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.232-237
    • /
    • 1993
  • The rheological properties of hard red winter, western white and Australian standard white wheat flours and of HRW-WW and HRW-ASW wheat flour blends having the same protein content were studied. Cooking properties of dry noodles prepared from HRW-WW and HRW-ASW wheat flour blends were also investigated. The noodles were prepared with salt and alkaline reagent. The salt and alkaline concentrations used were 1.7% and 0.17%. respectively, based on the weight of wheat flour. The alkaline reagent was an equal mixture of sodium carbonate and potassium carbonate. The HRW-ASW wheat flour blend had higher farinograph absorption and slightly stronger curve than HRW-WW wheat flour blend. Salt decreased the absorption of wheat flours by 2 and of wheat flour blends by 1%. However, alkaline reagent essentially had no effort on farinograph absorption. Salt and alkaline reagent strengthened the dough of wheat floors and wheat flour blends, with the former being more effective. No significant differences in pasting properties between HRW-WW and HRW-ASW wheat flour blends by amylograph were observed. There were no significant differences in rate of increase of weight or volume between noodles prepared from HRW-WW and HRW-ASW wheat flour blends. Alkaline reagent did not affect the weight gain of noodles hut lowered the volume gain. Breaking force of dry noodles and cutting force of cooked noodles were similar between the two noodles. Alkaline reagent increased both the breaking and cutting forces of noodles. Sensory evaluation revealed that the noodles prepared from HRW-WW and HRW-ASW wheat flour blends were slightly different. but not different from each other by preference test.

  • PDF

A Study on the Applicability of $C_5$ Hydrofluoroether-based Formulated Cleaning Agents as CFC-Alternatives ($C_5$계 수소불화에테르를 기반으로 하는 배합 세정제의 CFC 대체세정제 적용 연구)

  • Min, Hye-Jin;Bae, Jae-Heum;Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.172-181
    • /
    • 2010
  • Hydrofluoroethers (HFEs) with fluoride molecules in their structure which are evaluated as the third generation replacement alternatives to chlorofluorocarbons (CFCs) are known to be excellent for removal of nanoparticles and fluoride-type soils due to their low surface tension and high wetting index. In addition, HFEs have good physical properties with no flash point and excellent drying characteristics. But, HFEs also have shortcomings in that they are not effective for removal of organic soils due to their poor solubility in soil. In this study, $C_5$ HFE-based cleaning agents were formulated through addition of solvents such as isopropyl alcohol (IPA), ethyleneglycol monoether (EG), propyleneglycol monoethylether (PM) to HFE-7100 [$CF_3CF_2CF_2CF_2OCH_3$] or HFE-mec-f [$CF_3CHF=CF_2OCH_2CF_3$] with its maximum amount, respectively, in order to have no flash point for the safety in the working environment. These solvents are known to be excellent for dissolving organics in soil. Their physical properties and cleaning abilities for fluxes, water-insoluble cutting oils, and fluoride-type oils were evaluated and compared with those of other cleaning agents with single components. The experimental results show that the HFE-based formulated cleaning agents have various good physical properties which are almost similar to those of a single type of HFE cleaner. They show excellent cleaning ability for fluxes, water-insoluble cutting oils, and fluoride-type oils. These results indicate that the HFE-based formulated cleaning agents can be applicable to various industrial cleaning fields because of their good physical properties and cleaning abilities for various soils.

Evaluation of Tailorability and Mechanical Properties of Stretch Fabrics (스트레치 직물의 역학적 특성 및 봉제성능 평가)

  • Lee, Hwan-Deok;Sung, Su-Kwang;Kwon, Hyun-Sun
    • Fashion & Textile Research Journal
    • /
    • v.2 no.2
    • /
    • pp.150-158
    • /
    • 2000
  • This study investigated mechanical properties, drape coefficients and node indices of stretch fabrics. We applied mechanical properties to exhibited tailorability control in HESC and evaluated making-up. The mechanical properties such as tensile, bending, shearing, compression, surface characteristic values, thickness and weight were measured by the KES-F system and drape coefficient by drape tester. The summarized results of this study were as follows; First, stretch fabrics, almost, shown high stretch in weft inserted polyurethane yarn fabric and had a ${\pm}2{\sigma}$(sigma) range of shearing, compression, surface and thickness, except bending and weight, as compared with Japanese women's thin dress fabrics. Second, bending had a positive correlation in stiffness, anti-drape and flexibility & softness. Shearing had a negative correlation in crispness and scroop. Surface properties had a high contribution in fullness & softness. Third, The drape coefficient was found by measuring the mechanical properties according to the obtained regression equation. Forth, many problems are expected in overfeed and cutting operations in sewing process. In the decision of the good external appearance using TVA, only 26 of 55 samples are included in the range of the good external appearance. Fifth, in the regard of the result for sewing control, warp values are not necessary to control in the all kind of items. But weft value in the RT and EM are out of non-control zone. So we need a special management during sewing process.

  • PDF

Development of the formulation and the process of DXD-19 sheet explosive (판상 화약 DXD-19 조성 및 성형 공정개발)

  • Cheun Young Gu;Lee Jin Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.129-139
    • /
    • 2004
  • DXD-19 is a flexible sheet explosive, which is a new polymer-bonded explosives(PBX's). DXD-19 is relatively insensitive and can be extruded into various configurations to be applied to munitions. A typical application includes multi-point initiation for the warhead, cutting/severance devices and transfer lines. The DXD-19 composition employs a binder system derived from the thermoplastic elastomer(HyTemp 4454) containing $5\%$ OH terminated with isocyanate curable for increasing mechanical properties. The use of an elastomer CAB increases its mechanical properties and the use of an energetic plasticizer BDNPF/BDNPA(F/A) improves the process ability as well as energy contents. The composition of the extruded DXD-19 formulation is formed $\%$ weight of $PETN/HyTemp/ATEC/(F/A)/CAB=72\~73/12\~13/6\~7/6\~7/1\~2$. Our safety tests of DXD-19 shows Insensitivity to an impact test and friction test, good thermal stability and excellent mechanical properties.

Development and performance evaluation of a low-cost custom-made extensional rheometer (저비용 수제 연신레오미터 개발 및 성능 평가)

  • Sihyun Kim;Hanbyeol Pak;Jeong-Hyun Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.110-118
    • /
    • 2023
  • Characterizing the extensional rheological properties of non-Newtonian fluids is crucial in many industrial processes, such as inkjet printing, injection molding, and fiber engineering. However, educational institutions and research laboratories with budget constraints have limited access to an expensive commercial extensional rheometer. In this study, we developed a custom-made extensional rheometer using a CO2 laser cutting machine and 3D printer. Furthermore, we utilized a smartphone with a low-cost microscopic lens for achieving a high spatial resolution of images. The aqueous polyethylene-oxide (PEO) solutions and a Boger fluid were prepared to characterize their extensional properties. A transition from a visco-capillary to an elasto-capillary regime was observed clearly through the developed rheometer. The extensional relaxation time and viscosity of the aqueous PEO solutions with a zero-shear viscosity of over 300 mPa·s could be quantified in the elasto-capillary regime. The extensional properties of the solutions with relatively small zero shear viscosity could be calculated using a smartphone's slow-motion feature with increasing temporal resolution of the images.

Mechanical Properties and Sintering of Ultra Fine WC-Graphene-Al Composites (초미립 WC-Graphene-Al2O3 복합재료 소결 및 기계적 성질)

  • In-Jin Shon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.206-214
    • /
    • 2023
  • Tungsten carbide has many industrial applications due to its high electrical and thermal conductivity, high melting temperature, high hardness and good chemical stability. Because tungsten carbide is difficult to sinter, it is sintered with nickel or cobalt as a binder and is currently used in nozzles, cutting tools, and molds. Alumina is reported to be a viable binder for tungsten carbide due to its higher oxidation resistance and lower cost than nickel and cobalt. The ultrafine tungsten carbide-graphene-alumina composites were rapidly sintered in a high frequency induction heating active sintering unit. The microstructure and mechanical properties (fracture toughness and hardness) of the composites were investigated and analyzed by Vickers hardness tester and electron microscope. Since the high-frequency induction heating sintering method enables high-speed sintering, ultrafine composites can be prepared by preventing grain growth. In the tungsten carbide-graphene-alumina composites, the grain size of tungsten carbide increased with the amount of alumina participation. The hardness and fracture toughness of the tungsten carbide-5% graphene- x% alumina (x = 0, 5, 10,15) composites were 5.1, 8.6, 8.6, and 8.4 MPa-m1/2 and 2384, 2168, 2165, and 2102 kg/mm2, respectively. The fracture toughness increased without a significant decrease in hardness. Sinterability was improved by adding alumina to tungsten carbide-graphene.